Reduced Functions, Gradients and Hessians
from
Fixed Point Iterations for State Equations

Andreas Griewank *
Christele Faure T

16th January 2002

Abstract In design optimization and parameter identification, the objective, or response func-
tion(s) are typically linked to the actually independent variables through equality constraints,
which we will refer to as state equations. Our key assumption is that it is impossible to form and
factor the corresponding constraint Jacobian, but one has instead some fixed point algorithm for
computing a feasible state, given any reasonable value of the independent variables. Assuming that
this iteration is eventually contractive we will show how reduced gradients [Jacobians] and Hessians
(in other words the total derivatives) of the response[s] with respect to the independent variables
can be obtained via algorithmic, or automatic, differentiation (AD).

In our approach the actual application of the so-called reverse, or adjoint differentiation mode
is kept local to each iteration step. Consequently the memory requirement is typically not unduly
enlarged. The resulting approximating Lagrange multipliers are used to compute estimates of the
reduced function values that can be shown to converge twice as fast as the underlying state space
iteration. By a combination with the forward mode of AD one can also obtain extra-accurate
directional derivatives of the reduced functions as well as feasible state space directions and the
corresponding reduced or projected Hessians of the Lagrangian.

Our approach is verified by test calculations on an aircraft wing with two responses, namely lift
and drag coefficient, and two variables, namely the angle of attack and the Mach number. The state
is a two-dimensional flow field defined as solution of the discretized Euler equation at transonic
conditions.

Keywords. fixed point iteration, derivative convergence, algorithmic or automatic differentiation,
implicit functions, reduced gradient, reduced Hessian, Q- and R-linear convergence.

1 Introduction

Let us consider a parameter-dependent system of nonlinear equations
w = F(z,2) = 0 with F:R' xR"— R/ (1)

where x represents the vector of independent variables or parameters with respect to which we wish
to optimize. The goal is to find some desirable value of the response function

y = f(z,2) with f:R'xXR"—R"™ (2)

*Institute of Scientific Computing, Technical University Dresden, (griewank@math.tu-dresden.de)
TPolySpace Technologies, Paris (christele.faure@polyspace.com)

2 Andreas Griewank and Christéle Faure

that evaluates a few key quantities of the state vector z. For example the state equation F(z,2) =0
may be some discretized version of the Navier—Stokes equation with z representing the flow field
around an airfoil and the components of y = FI'(z,z) being the lift and drag coefficients. This
situation serves as a test case in the final Section of our paper. Although this is not necessary
for our theoretical statements one may usually assume that the dimension [of the state space is
orders of magnitudes larger than the number n of parameters 2 and the dimension m of y, which
we may think of as vector of objectives and soft constraints. In the airfoil example one may include
besides the aerodynamic coefficients also volume, manufacturing costs etc. Often some of the
design parameters do not enter directly into the state equations but determine some intermediate
parameters via a grid generation process. From a conceptual point of view this preprocessing does
not effect our basic approach very much, though it may raise some serious implementation issues.

To arrive at desirable response values by varying = we need the reduced function value
y=(x) = f(z(x),2) and its Jacobian dy/dx = ¢'(x), possibly post- or pre-multiplied by vectors
% or y, respectively. In order to effectively eliminate the variables z and w at least theoretically we
need the following assumption.

Assumption JR: JacoBiaN REGULARITY

On some neighborhood of a solution (z,z) with F(z,z) = 0 the Jacobians of F(z,z) and f(z,2)
with respect to z € R and 2 € R™ are once Lipschitz-continuously differentiable and the square
matrix

is nonsingular at all points in that neighborhood with ||F, (2, x)_IH <.

Consequences of the Implicit Function Theorem
By the implicit function theorem the Jacobian of z, = z.(z) s.t. F(z.(2),2z) = 0 is given by the

matrix

dz Jw -t ow — n
zo=F = ~(50) 55 = -lenn) Blens) eRS (

w
=

Then it follows by the chain rule for the total derivative of the responses or objectives y = ¢(z) =
f(z«(2), z) with respect to the design parameters z that

= folze, @) = fo(20,) Fo(20, @) Fo(zez) €R™ 0 (4)
As we will see below the triple matrix product on the right can be computed in two different ways
related to the forward and reverse mode of automatic differentiation. The latter method is more
efficient if m <« n as we may assume and a combination of both yields also second derivatives as
well as extra accurate first derivatives.

In order to express second derivatives in standard matrix-vector notation let & € R"™ be an
arbitrary but fixed direction in the parameter space and z, = Z.& the corresponding feasible
direction in the state space. Denoting differentiation along the straight line (z. + t2., @ + td) with
respect to t at ¢ = 0 by superscript - we obtain from (4) the matrix expression

g =¢"t = fo— LF\Fo+ fF7YF,F7VE, — f.F7VF, € R (5)

Reduced Functions and Derivative 3

where all quantities are evaluated at (z.,) and all dotted quantities depend also on (Z.,4) as

follows.
fo = felzo, 50 8) = foa(z0)3 + fralza)i € R (6)
o= felzan 20d) = [z)i + falz,n) i € R™Y (7)
By = Fo(z,2,5,8) = Fo(20,2)5 + Fop(ze,2) 8 € R (8)
F = Fznn,208) = Pz, 0) b+ Faplz,)@ € R (9)

The expansion (5) contains the two triple products fZ FYF,, f.F! F, and the quintuple product
f. F7YF, F71 F,, which can be computed in various ways as we shall see. If the feasible direction

matrix Z,. defined in (3) and the adjoint matrix of Lagrange multipliers

W, = —f.(z,2) F7 2, 2) € R™X! (10)

z

are known then one can compute the reduced Jacobian in either one of the forms
fot [Zo = @) = fo + WeE, € R

Often one does not need the full reduced Jacobian but only its product with a column vector & € R"
from the right or a row vector y € R™ from the left. Then we obtain the reduced tangent

and reduced gradient
e =49 = §fo—yf-F'F = §fot 0P, with @.=gW, . (12)

Hence we see that by letting & range over the n Cartesian basis vectors in R” or y range over the
m Cartesian basis vectors in R™ one can compute the reduced Jacobian ¢'(z) column- or row-wise
from the corresponding vectors z, or vectors w,, respectively. These then form exactly the columns
of the matrix Z. and the rows of the matrix W, defined in (3) and (10). Similarly one obtains
according to (5) for any feasible direction pair (Z.,4) = (Z.i,4) € RH"

o' =" = fot L AW Z+ WL E, e R (13)

In other words, if Z, and W, have been obtained, no more equation solving is required but only
directional differentiation in the forward and reverse mode. By letting & range over all Cartesian
basis vectors in R and thus the corresponding zZ, over all columns of Z, one could obtain the full
reduced derivative tensor ¢ (z) € R™*"*™ in form of its n directional contractions ¢'(z) = ¢"(z) &.
It seems doubtful that this enormous effort will often be worthwhile.

The computation of the whole feasible direction matrix Z, is not needed for calculating the
reduced Jacobian ¢’ and it can also be avoided if one only needs to calculate the product of a given

weight vector y € R™ with the directional derivative(s) ¢'(z). To see this we derive from (5)

. . . . (14)
= iy fo 4w Fy 4+ w0, F, with w, = — (gfz+w* FZ) F1.

4 Andreas Griewank and Christéle Faure

If 2, € R™ is computed for each feasible direction pair (%.,4) € R!*™ with & ranging over the n
Cartesian basis vectors in R™ one obtains the so-called reduced, or projected Hessian

g (z) = Vi[gep(z)] € R™"™ of the Lagrangian 7 ¢(x)

Normally one would assume that a reduced Hessian is much cheaper to evaluate than the reduced
second derivative tensor ¢”(z) € R™*"*" because the latter has m times as many elements. The
expectation may be wrong in our scenario because the main effort is likely to be the computation
of the feasible directions and Lagrange multipliers, which are defined in terms of first derivatives,
rather than the actual evaluation of second derivatives of the combined system (F, f).

Optimization Aspects

In optimization calculations with a single objective function y = f(z,2) € R the vector ¢'(z) € R”
is called the reduced gradient. At least theoretically, accurate and affordable values of the reduced
gradient allow us to treat the optimization of y as an unconstrained problem. This approach
leads to a class of schemes for equality constrained optimization problems that are unsurprisingly
named reduced gradient methods. In a certain sense all rapidly converging constrained optimization
methods are ultimately reduced gradients methods, but the wisdom of maintaining more or less
exact feasibility earlier on is debatable. On one hand it means that a feasible solution with a
somewhat reduced objective function is available, whenever the optimization calculation stops,
possibly because the computing resources or the patience of management has been exhausted.

On the other hand, if the optimization can be carried out until the end, then allowing earlier
on significant infeasibilities (in the sense of large residuals in the state equation) may reduce the
overall runtime significantly. This effect is especially likely to occur when the nature of the state
equation F'(z,z) = 0 is such that (re-)gaining feasibility is a rather slow iterative process. Then
one might also be interested in determining quite rapidly whether a suggested change in the design
variables z actually leads to a desirably low value of the reduced objective function. The right
compromise between feasibility and optimality is the hallmark of a good merit function for judging
whether an optimization step has been successful or not. In the context of design optimization
gaining feasibility and optimality at the same time has been proposed as one-shot approach by
S. Ta’asan [TKS92] and also employed successfully by A. Jameson [Jam95]. In this paper we will
not debate these wider issues but concentrate on the task of arriving as fast as possible at accurate
values of the reduced function and its first and second derivatives.

Note that we have assumed here and throughout that there is a given partitioning of all variables
into a set of state variables z and a set of design variables z with the former being considered as
dependent on the latter via the state equation. In the terminology of MINOS and similar nonlinear
programming tools the state variables are always basic and the design variables always nonbasic.
This fixed partition is only possible due to the regularity Assumption JR and because we have
excluded the possibility of inequality constraints. If the latter are also present our analysis applies
only locally, once all active constraints have been identified.

Preview of Contents

In Section 2 of the paper we set up direct and adjoint sensitivity equations whose solutions can
be interpreted as feasible directions and Lagrange multipliers, respectively. Either of them yield
immediately the desired reduced first derivatives. In addition we consider a second order sensitivity
equation. In view of their size in typical applications the sensitivity equations can usually not be
solved exactly and we must instead accept approximate solutions obtained by iterative solvers.

Reduced Functions and Derivative 5

In Section 3 we express reduced function values and their first and second derivatives in terms
of approximate feasible directions and/or Lagrange multipliers. Both are needed to obtain first
derivatives with enhanced accuracy and second derivatives with normal accuracy. In Section 4
we review some fundamental results on the convergence of contractive fixed point iterations. In
the subsequent Section 5 we apply these results first to the direct or forward differentiation of
the original iteration loop and then we analyse the new approach of iterated adjoints. It differs
completely from the iteration that would be obtained by mechanically applying the reverse mode
to the original iteration. In particular the memory requirement does not grow with the number of
steps taken. As a result we obtain estimates of the reduced function and its directional derivatives
that converge twice as fast as the underlying state space iterates. By way of explanation for this
superconvergence result we consider in Section 6 the special relations that apply when the state
equations are linear and n = 1 = m. In Section 7 our approach is numerically validated on an
Euler code in two dimensions. The paper concludes with the customary summary and tentative
conclusions in Section 8.

2 The Direct, Adjoint and Second Order Sensitivity Equation

Rather than directly dealing with the matrices Z, and W, or even second derivative tensors we
consider from now on for given ¢ € R” and y € R™ corresponding individual vectors z, € R",
w, € Rl and w, € R as defined in (11), (12), and (14). They can be characterized as solutions of
the following sensitivity equations

0 = F(z, &, 50, #) = Fo(2,)5 + Fo(z,2) i € R (15)
0 = Fz, 2,0, §) = 0 Fo(20,2) + 7 fo(20, 2) € R (16)

and
0 = F(z, 2, by iy 0, §,02) = Wy Fo(2e, @) 4+ s Fo(20, @, 20 &) + § fo (200 2, 5, 8) (17)

where F, and f, are as defined in (9) and (7). Notice that the last equation can be obtained by
formally deriving the previous one with 4 assumed zero throughout. Having obtained the vectors
Z., Wy and w, one may compute the restricted derivative information ¢, 7., and z, defined in (11),
(12), and (14).

At least theoretically each of the vectors 2., w,, and w, can be computed by solving one
linear system involving the Jacobian F,(z.,) and its transpose, respectively. The corresponding
right-hand sides

F(ze,2,0,—-%) , F(z,2,0,-7) F(z*,x,,é*,ab,—w*7—§70) € R

can be evaluated by a forward sweep, a reverse sweep, or a combined forward and reverse sweep
on the evaluation procedure for (F, f), respectively. Hence, in all three cases the operations count
for the right hand side is a small multiple of that for (F, f) itself. The same applies to the memory
requirement for the adjoints F(z., 2,0, —y) and F(z., 2, 3., @, —10x, —¥,0), which is also propor-
tional to the basic operations count, unless more sophisticated versions of the reverse mode with
checkpointing [Gri00] are employed. We expect this to be necessary only in rather exceptional cases
where the evaluation of I itself involves time-like evolutions.

In many applications the main obstacle to solving the sensitivity equations is that the Jacobian
cannot be formed and factored at a reasonable cost. We will certainly make this assumption

6 Andreas Griewank and Christéle Faure

here, since otherwise one may also perform Newton steps and the whole idea of extracting extra
information from the users fixed point iteration becomes moot. The same would still be true if
the Jacobian could be preconditioned well enough such that a suitable iterative solver could find
Newton steps or the solutions to our sensitivity equations quite rapidly, even when high accuracy
was required. Hence we will assume that the iterative solution of the state equation is a rather
drawn out process, possibly effected by a legacy code including various tricks of the trade that
the current users may not fully be aware of. While this is the scenario to which our approach is
applicable in principle, we will in fact inch back towards the Newton-like scenario sketched above
when it comes to establishing convergence at certain asymptotic rates. However, there is numerical
evidence that the approach works still in cases where the assumptions of our theory are not satisfied,
or at least not easily verified. For example, this is the case for the Euler code for which we obtained
the numerical results listed in Section 7.

In what one might call a two-phase approach many researchers solve the sensitivity equations
separately, after the state z, has been approximated with satisfactory accuracy. Here we will utilize
a piggy-back approach, where these linear equations are solved simultaneously with the original
state equation. Whatever methods one uses to generate approximate solutions 2, w and w to the
sensitivity equations their quality can be gauged by evaluating the derivative residuals F(Z*,Z),
F (2, w), and F(z., 3, w, w) defined in (15),(16), and (17). Here and sometimes in the remainder of
this paper we omit the argument vectors z, & and y because they are always selected as constants.
The derivative residual vectors can be obtained just as cheaply as the right hand sides mentioned
above and bound the derivative errors as follows

Proposition 1 (DERIVATIVE VECTOR ACCURACY BOUNDS)
Under Assumption JR and with & € R" or y € R™ fized there exist constants d >0 and vy < o0
such that with F defined in (15)
12 =2l < v (IFG @) +[[F(z 2,2 8)])
and with I defined in (16)
Y)+ [F (2,2, @, 9)])

[= .|

[
[
IA

and with I defined in (17)
[—w.l < v (1P| +I1F G e 2 @)+ 1Fz e w,)| + 1 (2 2,2 8, 0,9, 0)])) :
for all z with ||z — z.|| < § and ,w,w € R" arbitrary.

Proor The first two inequalities were established as Lemma 11.2 on page 285 in [Gri00]. The last

follows in a similar fashion as errors in z, Z, w, and the residual F itself all perturb the supposed
identity (17). n

The constant + is a function of local Lipschitz constants and the bound I' on the size of the inverse
F.(z,2)71. As always in nonlinear equation solving good estimates for these quantities are hard to
come by. As one can see in Proposition 1 both derivative vectors Z and w are usually affected by
error in the underlying z, which explains why there is often a time-lag in their convergence. It can
be expected to be even larger for w, which also depends on the other two derivative vectors 7 and
w. The delay has been observed on most iterative schemes other than Newton’s method.

Reduced Functions and Derivative 7

3 Approximating Reduced Functions and Derivatives

As an immediate consequence of Proposition 1 we note that by replacing the exact vectors z,, w,
and w, in the formulas (11), (12), and (14) by approximations , w and w one obtains also first order
approximations to vectors of first or second reduced derivatives. Moreover, as originally suggested
by Christianson in [Chr98], one can use the approximate derivatives obtained to compute corrected
reduced function and Jacobian values whose error is essentially that of the first order estimates
squared.

Corollary 1 (CORRECTED FUNCTION ESTIMATE)
Under the assumptions of Proposition 1 and with any vector w € R” for given y € RY, the corrected
value

oc=o(z,z,w,y) =yf(z,2)+ w0l (z) (18)

satisfies

7o) —o(z,z,0,9)] < TIF(za)|[[|[F(z,2,0,9)|[+ O(1F(z,2)|1%) o

Proor The assertion follows from the Taylor expansions

flaaz) = [flzo)+ L(zo)(-2+ O(lz = 2]
0= F(zey2) = Flz,a)+ F.(2,2) (2 — 2) + O(||2 — 2|%)

by the definition of I and with I' as an upper bound on the inverse Jacobian norm. m

As we will see in Section 5 one can expect that within an iterative procedure the corrected estimate
yf(z,2)+wl(z,z) converges roughly twice as fast as yf(z, z) to the actual reduced function value
yf(z«,x). This technique for the doubling of the order of the estimate is related to the meth-
ods of Pierce and Giles [PG00] and Venditti and Darmofal [VDO0O] for obtaining superconvergent
approximations to integral quantities from the solution of partial differential equations.

A similar superconvergence result can be obtained for the partial derivatives of the reduced
function if Lagrange multipliers w, feasible directions #, and second order adjoints w are available.
First we notice that the approximating vectors

§ = L)t L0 € R and @ = §fo(z0) + 0F,(2,2) € R (19)
yield the following results for the desired reduced partial
g+ O(FEN+F() = g = 6x = i = 2+ O([FR)[+|F(z o)) . (20)

Hence, one may get a first order approximation to each reduced Jacobian component by approx-
imately solving either the direct or the adjoint sensitivity equation. We can get a corresponding
second order estimate by applying Corollary 1 to the composite state equation

F(z,x) = - F(Z,(;:ﬁ?x) - ; (21)
where
XE[;,ZE[;, (22)

with the new response function

f(z,x) = f(z2,2,2) = f.z,2) 2+ fu(z,2) 2, (23)

8 Andreas Griewank and Christéle Faure

Corollary 2 (CORRECTED PARTIAL ESTIMATE)
If the Assumption JR holds with I twice Lipschitz-continuously differentiable and & € R"™ and
y € R™ are fized then the corrected estimate

b=6(z%0,0) = §f(z2) +0F(z,) + 0F(2) (24)
satisfies
_ . . .o hd . — _ = .o 2
ye'()i — oz 4 ww) = O(IFG)+IFE DI+ IF o)+ 1F(z 2, b)) .
for any vectors ,w, w € R,

Proor The Jacobian matrix of the extended system (21) is given by

F.,0 . . .
F. = [Fj :Fz] where F.=F.. 4+ F., &
By assumption it is locally Lipschitz-continuous and also invertible. Hence we can apply the
previous corollary with the adjoint system given by

0= F(z,x,w,y) = w [%:122] +§{f27fz} : (25)

Partitioning F = (F, F) and w = (w0, @) we find that (25) is equivalent to the two equations (16),
(17), and that

wF(z) = @F(z) + @F(z, %)
so that ¢ = o satisfies indeed the assertion as naturally

IF@) = O(IFEI+I1EE) and [Pz W)l = O(|F(zw)|l+[[F(z 2 00)]) (26)

It follows immediately from Corollary 2 that the error in the reduced partial & is essentially of order
| F|| + || F|| ||F]| if @ is not computed at all but simply defaults to zero. The resulting synergetic
estimate is still likely to be better than either simple first order estimate if the state equation itself
has been solved to a significantly higher accuracy than the sensitivity equations.

As we will see below the derivative estimates 2, w, and w generated from fixed point contractions
converge at about the same linear rate as the underlying iterates z themselves. The same is true for
the corresponding residuals F'(z), F(Z, %), F(z,w), and F(z, 2, w, w) where we have again omitted
the constant arguments z, & and y. Whereas the corrected function estimate o given in Corollary
1 is probably very useful for an efficient optimization procedure it is not yet clear whether this is
also true for the corrected partial derivatives ¢. The extra effort needed for the computation of 2
and w might pay off if & is a prospective search direction so that an accurate directional derivative
estimate ¢ would be helpful in line-searches or in a truncated Newton iteration.

We may distinguish two kinds of cost that are incurred when we evaluate reduced first and second
derivatives. Probably the dominant expense is to compute vectors %, w and possibly w for various
settings of & and y as approximate solutions of the appropriate sensitivity equation (15), (16), or
(17). Subsequent collections of these vectors must be substituted into the right hand sides (11),
(12), (13), or (14), which effectively means performing some forward and/or reverse differentiation
on the function F'(z,z). Except when the full second derivative tensor ¢” is evaluated via (13) the
number of such local differentiations is not very large and we may assume that their total cost is
dominated by the required effort to solve sensitivity equations at least approximately. In Table 1
of computational costs we have only counted the number of such solutions required for computing
various derivatives with normal and double accuracy.

Reduced Functions and Derivative 9

Table 1: Cost factors for derivative estimates with single and double accuracy

Symbol | Degree | Components Single Double | Name
@ 0 m 1 2 Reduced Function
4 1 n 2 n Reduced Gradient
o 1 m 2 m Reduced Tangent
¢’ 1 mXxn min(m,n) | mn | Reduced Jacobian
yo'a 2 n 3 - Second Order Adjoint
" 2 mxXmnxn m4n - Reduced Tensor

4 Contractions and their Convergence Rates

The iterates zj, € R! generated by many practical methods for approximating a solution z, = z,.(z)
with F'(z.,2) = 0 satisfy a recurrence of the form

Zh+1 = Hk(zk,x) = Zr — PkF(Zk,w) . (27)

Here the preconditioner Py is some [X [matrix that approximates the inverse of the Jacobian
F.(zk, x). The closer that approximation, the more the iteration resembles Newton’s methods with
its excellent local convergence properties. As long as F(z,z) # 0 any new iterate zpy; can be
written in the form (27) since we have not yet imposed any conditions on Py. To ensure stable
convergence from within a vicinity of z. we make the following assumption

Assumption CP: CONTRACTIVE PRECONDITIONING
The preconditioners P, satisfy

I — Py F.(z,2)]| < p <1 forall k (28)

with respect to some induced matrix norm || - |.

Because the norm || - || must be independent of k this hypothesis is a little stronger than the
condition that the spectral radius (= modulo of largest eigenvalue) of all [I — PpF, (2., x)] are
uniformly bounded below 1. According to Ostrowski’s Theorem (see Propositions 10.1.3 and 10.1.4
in [OR70]) it follows from Assumption CP that all initial guesses zp whose distance to z, is less
than some bound lead to convergence with

l2k41 = 2|l

Qizr — 2 = limsup 29
R e)
Here the vector norm || - || must be consistent with the matrix norm used in Assumption CP so

that for any square matrix A € R/

Al = max [JAz]I/]l=] -
0#£2€R!

10 Andreas Griewank and Christéle Faure

Quotient and Root Convergence Factors

The chosen norm strongly influences the so-called Q-factor Q{z; — 2.} defined by (29) for any
iteration sequence {z; — z.} with zp # z. for all k. In contrast it follows from the equivalence of
all norms on finite dimensional spaces that the R-factor

R{z, — Z*}keN = limksup Vze = 2l € Q{21 — zelren < p (30)

is norm independent. The last inequality holds by (29) and the other one is established as Propo-
sition 9.3.1 in [OR70]. In both (29) and (30) we may replace the uniform bound p < 1 from
Assumption CP by the corresponding limit superior

po = lim sup I = Pe (2, 2) | < p (31)

so that in conclusion

pr = Ri{zk — zdren < Q{ze —ztrken < po < p <1. (32)

When R{zr—z.}ren = 0 the convergence is said to be R-superlinear and when even Q{zy—z.} =0
it is called @-superlinear. The latter, highly desirable property is again norm invariant and can be
established for certain secant-updating methods [DS96] without the even stronger condition pg = 0
necessarily being satisfied. This and other situations where p,. < pg are particularly advantageous
with the respect to the corrected function value. Provided I — FyF, is a compact operator the
superlinear convergence property of secant updating schemes can also be established in a Hilbert
space setting.

Convergence Rates of Residuals

Except on academic test functions one can normally not compute the solution error ||z — z.|| and
must therefore be content to gauge the quality of the current approximation z; in terms of the
residual Fj, = F(z,2). Under our Assumptions JR one may view |[F(zy,)| as an equivalent
norm to ||z; — z«|| since there must be constants 6 > 0 and 1 < v < oo such that

Lo [1£'(z, 2]

<y for Jr—z] < 8.
7= ==l

This implies for any sequence z, converging to, but never attaining exactly z. that
R{Fi}ren = R{zr — 2 dren < Q{Fdren < 77 Q{z — zlren
In particular we have the equivalent superlinear convergence conditions
Q{zr —zdren = 0 & Q{Fitren = 0
and
R{zp — zutpen = 0 < R{Fplren = 0.
To succinctly indicate convergence with the R-factor p, we will write

o= 2.4+ 0(pF) and F(z,2) = O(pF) .

Reduced Functions and Derivative 11

In practice one may use the estimates

R{F,} ~ (HFkH>E and Q{Fi} ~ max{
[[£o

[£l HFk+1H}
=l [El]

to track the progress of the iteration. Here we have somewhat arbitrarily chosen to maximize over
two successive residual reduction ratios for the Q-factor. The reason is that some kind of alternating
approach seems to be a convergence pattern that occurs reasonably often, especially in the vicinity
of singularities or severe ill-conditioning [Gri80, NS96].

5 Derivative Recurrences and their Convergence

In this section we attempt to derive from the original fixed point iteration extra recurrences that
simultaneously compute the desired derivative quantities in a piggyback fashion. First we consider
more or less straight forward differentiation. Suppose the preconditioner matrix Py is for each k at
least locally a smooth function of (z, z); often it will even be constant. Moreover, let 2 vary along
the straight @ = 2(t) = 2(0) + ¢t & as a function of the scalar parameter ¢t ~ 0. Then it follows by
induction on & that when z; = z4(¢) is differentiable in ¢ so is zx41 and the derivatives Z; = 24 (¢)
must satisfy the recurrence

Sppr = Gn— Py Fzp, 2, 5, 8) — Py Fzp, 2) . (33)

Here the matrix Py = d Py(zx(t), x(t))/dt is the derivative of the preconditioner with respect to ¢,
which exists under the assumption made above. The derivative residual F(Zk, x, %k, &) is defined
by (15).

The last term P F(z,2) is in some way the most interesting. If the preconditioner is fixed
so that (27) reduces to a simple substitution method, the last term vanishes since clearly P, =0.
Even if the Pj are nonzero but their size is uniformly bounded, the term P F(zk,) disappears
gradually as Iy, = F(zx,x) converges to zero. This happens for example in Newton’s method
where Py = F,(zg,2)~! is continuously differentiable in (z,), provided F itself is at least twice
continuously differentiable. However, second derivatives should not really come into it at all as
the implicit derivative 2, is according to the explicit representation 2. = Z.4& with Z, given by (3)
uniquely defined by the extended Jacobian of F. Hence we may prefer to simply drop the last term
and use instead the simplified recurrence

Sept = Fh— PpF(zp w2) (34)

The implementation of this recurrence requires the deactivation of P, when this preconditioner
depends on x as it usually does. By this we mean that the dependence on =z is suppressed so that
it looks as through Py consists of real entries that have fallen from the sky. Whether and how
this can be done depends on the particular AD tool. It should not be made too easy, because
the unintentional suppression of active dependencies can lead to wrong derivative values. In the
numerical calculations reported in Section 7 no deactivation was performed but we believe that the
P, may be assumed to be piece-wise constant. For our theoretical analysis we make the following
assumption

Assumption UL: LipscuiTz CONTINUOUS DEPENDENCE
For the convergent sequence zp — z, the preconditioners P are all differentiable with respect to

12 Andreas Griewank and Christéle Faure

(z,) on some neighborhood of (zj,) such that the derivative tensors

(8 88)Pk 6 RleX(H'n) (35)
Z, 0%

are uniformly bounded over all &. =

Under this assumption both derivative recurrences lead to the same convergence according to the
following generalization of a result by Jean Charles Gilbert [Gil92].

Proposition 2 (RooT CONVERGENCE FACTOR oF DERIVATIVES) Under Assumptions CP and UL
we have for all zy sufficiently close to z. and arbitrary Zo applying, either (33) or (34)

R{%; — Z}renw < p=max (,0*7 R{F(Zk77$72k7i)}keN) < po O

where p, is defined in (31).
Proor See [GBCT93]. -

According to Proposition 2 the complete (33) and the simplified (34) derivative recurrence yield R-
linear convergence to the exact derivative z.. In both cases the root convergence factor is bounded
by the limiting spectral radius p,, which also bounds the quotient convergence factor of the iterates
2y, themselves. If p, = 0 we have (-superlinear convergence of the z; and the slightly weaker
property of R-superlinear convergence for the Z;. This result applies in particular for Newton’s
method, where the z; converge in fact quadratically.

In [GBCT93] a considerable effort was made to extend the result to quasi-Newton methods where
the sequence P is obtained by secant updating, which leads to Assumption UL being violated in
general. Nevertheless, it could be shown that due to classical convergence characteristics of secant
updating methods the decline of the residuals F(zy, 2) is just fast enough that the last term in (33)
still gradually disappears. It should be noted however, that in this situation the derivatives Z; (and
the adjoints wy, discussed below) do in general still only converge linearly, while the z; themselves
converge superlinearly. For many other methods like conjugate gradient type schemes and of course
multi-level approaches our assumptions are not easily verified. The simplified piggyback iteration
for solving simultaneously the equations F'(z) = 0 and F(Z, %) = 0 is displayed in Table 2 below.

Table 2: Direct Fixed Point Iteration Table 3: Adjoint Fixed Point Iteration

fix x,2 € R" fixx e R*"y € R™
initialize zg, Zg € R initialize zg, wo € R!
fork=0,1,2,... fork=0,1,2,...

wg = F(zg, x) [wisyi] = [F(zr,2), fzr2)]

ﬂ)k:F(Zk,w,é’k,i) Zk:F(Zk,w,ﬂ)k,y)

stop if |Jwg]|| and |[wg|| are small stop if |Jwg|| and ||Zx|| are small

241 = 2k — Prowy, Zra1 = 2p — P wp

Zpp1 = 2 — Py, Why1 = W — 2 Py
yr = [z, @) Yk = f(zk,), 0k = Yyr + Wx w
Uk = fo(zr,2) 2+ fo(zr, 2)d T = g Folzp,) + 7 fo(2n, @)

Reduced Functions and Derivative 13

Adjoint Fixed Point Iteration

Except for the omission of the term involving P, and the suggested modification of the stopping
criterion, the scheme listed in Table 2 could have been obtained by simply differentiating the original
fixed point iteration in the forward mode. This black box approach often yields virtually identical
results and it alleviates the need for any code modification by hand. Unfortunately, things are not
nearly as convenient in the reverse mode.

Suppose one has a code for executing the update (27) a certain number of 17" times and subse-
quently evaluating the response function y = f(z,) at the final z. If one then applies an adjoint
generator nominating x as independent and y as dependent variables the resulting code will have
some pretty undesirable features. The main crux is that it will save all intermediate states on the
way forward, which means a T-fold increase in memory relative to the original fixed point iteration.
The reason for this apparent waste of storage is that AD tools cannot know (and usually cannot
be told either) whether an iteration represents a genuine evolution whose complete trajectory is
important for the adjoints to be calculated, or whether the early stages are only of passing interest
as the trajectory homes in on a fixed point later. In the latter case, which is applicable here, the
return sweep of the reverse mode regresses in every sense of the word from good information in the
vicinity of the solution point to much earlier iterates where function and derivative values have little
to do with the desired implicit derivatives at the limit. Moreover, in contrast to the constructive
tests given in Proposition 1, we have no way of gaging the quality of the approximation z ~ z. that
finally pops out of the black box adjoint procedure. Even if we could test its quality, there would
be no apparent way of refining the approximation other than by rerunning both sweeps with an
increased T'. Some of these arguments against mechanical adjoining can be made even in the linear
case as was done in [Gil00]. As the reader might suspect by now this gloomy description only sets
the stage for the following enlightenment.

To compute w, one must somehow solve the adjoint sensitivity equation

FZ(Z*7$)TQI)T = —fz(z*,x)TgT = F(Z*,x,O,—g)T (36)

obtained by transposing (16). The transposed Jacobian I, (z,,z)” has the same size, spectrum, and
sparsity characteristics as I, (z., @) itself. Hence the task of solving the adjoint sensitivity equation
(36) is almost exactly equivalent to the task of solving the direct sensitivity, equation (15). Because
of the similarity relation

T _
PUF (z,2)" = P PE.(z1,2)] PTT (37)

the square matrices I — Pp I, (z,2) and [— PkTFZ(zk,x)T have the same spectrum. Hence the
latter has by Assumption CP a spectral norm less or equal to p < 1 and we may solve the adjoint
sensitivity equation (36) by the iteration

ﬂ)g—l—l = ﬂ)g_P]?[FZ(Zlmw)Tﬂ)g—l_fZ(lex)TgT] = wg_PEF(Zk7x7ﬂ)k7g)T' (38)

where F' is defined as in (16). The recurrence (38) was apparently first analyzed by Christianson
[Chr94], albeit with a fixed final preconditioner Pj.

Now the question arises whether the adjoint sensitivity calculations can also be performed in
a piggyback fashion, i.e. without setting up a second phase iteration. This means that we can
propagate the adjoint vectors wy forward without the need to record the intermediates z; and the
corresponding preconditioners. Only each coupled evaluation [F(zk, z), [z, x)] must be reversed
to yield the adjoint residual F'(zy,, w, y) € R' at a comparable computational effort. However, it
should be noted that the response function f must now be evaluated at each iterate rather than

14 Andreas Griewank and Christéle Faure

just at the end. This extra effort is typically quite small and sometimes required anyway for the
adjustment of boundary conditions [FE00]. The size of the resulting adjoint residual F' should be
included in the overall stopping criterion, which yields the iteration displayed in Table 3. For a
real code this iteration can be obtained by applying an adjoint generator only to the body of the
loop without reversing the loops order of execution. In this transformation the design parameters
x should be declared as passive with respect to differentiation or otherwise the reduced gradient zy,
must be reset to zero before it is actually computed after exit from the loop.

Since the transpose I — Fz(zk)TPkT is the Jacobian of the adjoint fixed point iteration for wy it
has the same contraction factor py and we obtain the following Corollary of Proposition 2.

Corollary 3 (RooT CONVERGENCE FACTOR OF ADJOINT DERIVATIVES) Under Assumptions CP and
UL with F twice Lipschitz continuously differentiable we obtain for all zy sufficiently close to z,
and arbitrary wo by applying the iteration of Table 3 infinitely often

R{wy — w.}ren < p=max (p., R{F(z, ¢, 0k, §) then) < po
(]

It must be stressed that contrary to what one might expect the vectors wy and Zz; are not the
adjoints of the intermediate values wy and zp in the usual sense. The concept of an adjoint is
normally only defined for evaluation procedures that involve an a priori fixed sequence of elemental
operations. However, in the linear case discussed in Section 6 there is an interpretation of the
barred quantities as adjoints in a more conventional sense.

It is important to note that the adjoint evaluation yielding z; and thus wgy; immediately
follows a corresponding forward calculation, so that taping is only required temporarily. What
we call here adjoint fixed point iteration has been referred to as iterative incremental form of the
adjoint sensitivity equation in the aerodynamic literature [NHJ*92].

Second Order Adjoint Fixed Point Iteration

In order to obtain second order adjoints wy occurring in (14), (17), and (24) we simply have to
differentiate the adjoint fixed point iteration once more, this time in the forward mode as displayed
in Table 4.

As one can see Table 4 contains essentially the union of Table 2 and Table 3 plus four statements
and the convergence test involving w. For the numerical results reported in Section 7 it was obtained
by applying the source transformation tool Odyssée a second time in direct, or tangent, mode to the
code representing the adjoint fixed point iteration listed in Table 3. It would probably be harder to
generate a code that involves only the first order quantities 2, wy and the corresponding residuals
Wy, 2, but not wy, and Zj. Since the transpose I — Fz(zk)TPkT is also the Jacobian of the fixed point
iterations for wy its has again the same contraction factor and we obtain the following Corollary
of Corollary 2.

Corollary 4 (RooT CONVERGENCE FACTOR OF SECOND ORDER ADJOINTS) Under Assumptions CP
and UL with I twice Lipschitz continuously differentiable we have for all zy sufficiently close to z,
and arbitrary wq the iteration of Table § infinitely often

R{wy — wi}pen < p=max (,@ P R{F(Zm%Zk@ﬁk@ﬁk)}kel\!) < po - (39)

Reduced Functions and Derivative 15

Table 4: Second Order Adjoint Fixed Point Iteration

fixz,2 € R,y e R™
initialize 2g, 20, Wo, Wy € R!
fork=0,1,2,...

[wk7yk] = [F(Zkvw)vf(zkvw)]

wk:]i’(zkvxwékvx‘)
2k :F(Zk7$7ﬂ)k7§)

Ek = F(Zk,$,2k,i,ﬂ)k,@,ﬁ)k>
stop if ||wgl|, [[wkl], ||Zk|] and ||zk|| are small

g1 = 2 — Prwy Zpp1 = Zp — Py
Wyt = Wg — 2k P W1 = W — 2k Py
yr = f(2k, @) o) = Y Y + Wi wy

Uk = fo(zhy 0, 50, &) Gp = YUk + wptdy, + g wy
Tp = W Fac(zkv $) + gfx(zh $)
fk = Ii)ka(Zk, x) + ﬂ)kFl,(Zk, z, Zk, x) + @fw(zk, z, Zk, x)

Substituting Proposition 2 and its two Corollaries into Proposition 1 and its two Corollaries we
obtain the following list of R-linear convergence results

5=z = O(|F(=z)])) = 0(pl)
v =y = O(IF(z)])) = O(ph)
ok = 5y = OUFGEIIFE+ F(z)]2) = O(plph)
W — @ = O(|[F(z0)l| + 1P (21,)] = O(ph)
T = 3. = O(|F ()l + 1P (zk, 00)]]) = O(ph)
o=z = O(IFGI 1 (r, 2)]) = O(ph)
B =g = OUFGEI+ 1, 2)]) = O(ph)
Gk = G = O(IF)|+ 1E (o 2|l + I1F (i 0| + 11F (21, 20y 00,) [)* = O(p2¥)

iy =i = OUF GO+ 11 Gr 200+ IF iy o) |+ 1 s 2 wps o)) = O(oh)

Here we have again omitted the constant vectors z, & and y as arguments.

Extended Computational Graph

In Figure 1 we have displayed the dependence relations between the various vector quantities in our
iteration loops. The oval conditionals = 07 indicate that the input vectors coming from the right
are checked for size in a suitable norm. If they are sufficiently small the iteration is terminated;
otherwise a suitable multiple of the residual vector is incremented to the node values on the left.
The right half displays the original state space iteration with directional derivatives being carried
along as well. Here, as indicated by the vertical arrows, the vectors z and & are given inputs,

16 Andreas Griewank and Christéle Faure

whereas y and g are the resulting outputs. They may be (re-)calculated throughout or only after
the state space iteration has terminated. The left half of the graph represents the adjoint quantities
as mirror images of the direct ones. The dotted lines represent the dependence of the corrected
response o and its derivative ¢ on both direct and adjoint quantities.

Unless all iterations are indeed globally contractive one may reach different limit points de-
pending on the initialization of z and Z. For simplicity we may assume without too much loss of
generality that the state vectors z and z are initialized to zero. Then we can distinguish between
four kinds of variables and the corresponding graph nodes.

independents — dependents

solutions < residuals

The solution variables (here z and £) are initially zero whereas the corresponding residual variables
(here w and w) are supposed to be zero at the end. Moreover, as we have suggested graphically
there is a nice duality relationship with the corresponding adjoint nodes in the left half of Figure 1.
Independent nodes have dependent adjoints and vice versa. Similarly, solution nodes have residual
adjoints and vise versa. This symmetry about the vertical center line is aesthetically very pleasing.

£
g
Y
ﬁ
I
[}
Rl
ISH
Y
g
g

Feasibility: dual primal
Figure 1: Direct and Adjoint Fixed Point Iterations with Directional Derivatives

Since the adjoint iteration on the left is linear and F, by assumption regular the adjoint limit
values of (w,w) are unique. Moreover, these convergence results remain true irrespective of the
order in which the updates of the primal and dual variables are carried out. A standard two-phase
approach is to first iterate the primal variables (z, %) to convergence with full accuracy and only
then to initiate the adjoint iteration. Alternatively one might prefer a ” piggyback” approach, where
the adjoint iteration is performed simultaneously as embodied in the programs listed in Tables 3
and 4. At least on our example Euler code the adjoint iteration does not seem degraded at all by
the early perturbations in the piggyback approach.

Reduced Functions and Derivative 17

Possible Uses in One Shot Optimization

The dashed lines on top of Figure 1 represent data dependencies that arise when the design variables
x, the prospective search direction # and the multipliers y are adjusted in view of the current
approximations of the reduced function y, the reduced gradient z and their directional derivatives
y and z. In particular j may be a vector of Lagrange multipliers that is dynamically selected by a
constrained optimization algorithm. Within the aerodynamic design community specific suggestions
for adjusting z simultaneously in a one-shot manner have been used with success in [Jam95] and
[TKS92]. As far as we are aware of the use of second derivatives have not been suggested in this
context.

As we have mentioned earlier, it is a difficult question to decide how much feasibility in z one
should recover keeping = constant via the fixed point iteration, before selecting another optimization
step in z. Without strong convexity assumptions that preclude the existence of local minima or
other stationary points the result of the design iteration may strongly depend on initializations.

6 Special Relations in the Linear Case

Suppose the state equation F' = 0 and the response function [are linear with the latter not
depending explicitly on z. For fixed y and & we may furthermore replace f with yf and restrict
also to be scalar so that effectively y = 1 = &. Hence we can write without loss of generality

F(z,z) = Az+ba and f(z) = cz (40)

so that z(z) = —A7'bx and y(z) = —c A~ 'bx, where b,c € R and A € R'*! are constant. The
sensitivity equations have the explicit solutions

3, = =A%, w, = —cA™! and w, = 0,

where the last identity follows from the fact that second derivatives of linear functions vanish
identically. Assuming finally that the preconditioners P, = P € R/*! are the same at each iteration
the recurrences for the zx, Zx, and wy reduce to

Zh41 = 2k — P(A,Zk + bx) , ,é’k_|_1 = zj — P(Aé’k + b) , (41)
Wiyl = Wi — (ﬂ)kA + C)P , ﬁ)k-l—l = ﬂ)k — ﬂ)kAP .
Starting from 2y = 0 = 2y and Wy = 0 = wg one can easily check by induction that

k—1 4 k—1
z = —Z(I—PA)]Pbx, Z = (I — PA)YPb,

= = (42)
Wy = —cPY (I-AP), @ = 0.

=0

Our contractivity condition CP requires exactly that the common spectral radius p, of I — PA
and I — AP is less than one, so that we have the convergent Neumann series

Y (I-PAYP = (PA)'P = A™' =P(AP)™" = P> (I - PA)
J=0 7=0

18 Andreas Griewank and Christéle Faure

Hence we see that
= AT+ 00", 4 = —ATHO00Y), and wp = —cATLH0O(pF) .

Whereas this rate of convergence applies also in the general, nonlinear case the following exact
identities are specific to the linear scenario.

Proposition 3 (IDENTITIES BETWEEN ESTIMATES)
For the linear system (40) we obtain exactly

Yok = €22k = o = y.+ O(p)
Yo = Chap = Wb = o = U+ O(p2F)
where
O = Cc2p+wWpwy and & = ¢+ Wiy since wp =0 . o

PROOF As a consequence of (42) we have

2k—1 k—1

Czp = —¢C Z(I—PA)ijx =c I—I—(I—PA)’“} —Z(I—PA)ijx
J=0 7=0
k—1 -1
= cz—cY (I-PAY(I-PA)Pbr = czp—cP> (I-AP)(I-AP)"ba
J=0 7=0

= czp+ wpwg

as wy, = (I — AP)*bz . In order to prove the second assertion we note first that

k—1 k—1
¢t = —¢ Y (I=PAYPb = —cPY (I - APYb = wyb
J=0 7=0

Simply substituting the explicit expressions for 2z, and wy into the corrected estimate we obtain
with F' = 0 and the above identity of the first order estimates

o = RetwAls = [o— (@ — @) P 5 = et e P(I— AP P 5
k—1 4 2k—1 4
= [T =P | =SS0 APYB| = | Y (T APY|b = ciy = wnd
J=0 7=0

Thus we see that after k iterations the corrected function and derivative estimates have already
reached exactly the values that the simple estimates will only reach after 2k iterations. These
identity relations do crucially depend on the constancy of the preconditioners as they are already
violated for k = 2 when Fy # P;. Nevertheless the asserted orders are of course attained under our
general assumptions for the nonlinear case. Moreover, in the numerical results reported in Section
7 the estimates for the response function and its derivatives do in fact very closely exhibit the
doubling pattern established here under the assumption of linearity and constant preconditioning.

Reduced Functions and Derivative 19

Interpretation of z, and w; as Adjoints

In the linear case we can interpret the iterates z; directly as adjoints in the conventional sense.
More specifically one can easily derive from (41) that for all ¢ < k

(zh—z) = (I — PA " (5 - 2)

and

Zh; = ct+wWp_;A = C(I— PA)k_i
Hence we find for yy, = ¢z, that

= 0z

Yy = Zh—i (43)

As Z;, — 0 this reflects the fact that the influence of an earlier state z; on a newer state z;, wanes as
k—1 the number of fixed point iteration in between grows towards infinity. For the nonvanishing wy,
a corresponding interpretation seems to require a small rewrite of our original recurrence. Namely
the residual evaluation wg = Azi +b must be replaced by the mathematically equivalent recurrence

zigi— = Pw;, wipr = wi+ A(zq1 — 2) (44)

2]

Awy

starting fromw, = b+ Az with arbitrary zg € R%L It yields for the true adjoint w; = Y yr with

wy = 0 the backward recurrence

k k
W, = Wiy — G P = —ZZ’J‘P = —Zik_jp
j=i j=i
k—1 k—1 4
= - ZZJ‘P = —c Z (I — PA)]_l P = wi_;
=0 =0
Hence observe that similarly to (43)
. J .
w; = = Wk_;
9z, YUk k

The influence of w; on z; and thus yyr = ¢ 2z does not tend to zero because of the lasting impact
that w; has on all wy for £ > 7 in the incremental form (44). Especially in the nonlinear case, it is
probably most appropriate to view the Z; wy as iterates in their own right.

7 Numerical Results

The following results were obtained on a 2D Euler code written in Fortran 77 and provided by
Vittorio Selmin from Alenia, Torino. The configuration considered is the standard test case of the
NACAO0012 airfoil with a structured computational mesh of 1385 nodes with about 23 nodes on the
skin. The ”design” vector & € R™ with n = 2 consists of the angle of attack and the free stream
velocity. They are set to the values 1 = 1° and zy = M., = 0.8, respectively. The response vector
y € R™ with m = 2 considered consists solely of the lift coeflicient y; and the drag coeflicient ys,.
Correspondingly both the direction & and the weight vectors y were always chosen as one of the
Cartesian basis vectors in R?. Hence there are in fact four different seeding possibilities, which
yield in particular the reduced 2 x 2 Jacobian with normal and double accuracy as well as the two

20 Andreas Griewank and Christéle Faure

reduced Hessians of both lift and drag with respect to angle of attack and free-stream velocity.
The code was differentiated repeatedly by Odyssée, which required some modifications by hand to
obtain the nonstandard adjoint code with directional derivatives displayed in Table 4 in Section 5.
The derivative vectors Z, w, w were always initialized to zero and the second order weighting vector
y was kept zero throughout.

First to verify Proposition 2 and its Corollaries we monitored the norms of the state equation
residual I" the direct derivative residual F the adjoint derivative residual F and the second order
residual I as defined in equations (1), (15), (16), and (17) respectively. The logarithms of these
norms divided by their initial values were plotted against the iterations counter in Figure 2. As
one can see by the four slopes all of them converge asymptotically with a similar rate as predicted
by the theory. Also it is noticeable that the second order residual trails behind the other three and
the state equation is a little bit ahead as was to be expected in view of the theory in Section 5.

3 : : : , , .
21 1
1t i
g 0r | i
®] ;
Z -1 r ; |
T Ll _
-5 k\/\kﬂ
-3 L \v\ i
T AN
8 ‘4 B \\\ i
3 5| — -
= 6l state equation residual — |
_7 | adjoint derivative residual T |
8 secondlorder relsidual | | | |

0 200 400 600 800 1000 1200 1400
[teration

Figure 2: History of Residual Norms F, F, F, and F for y = e and & = es, i.e. lift coefficient and Mach
number

In our piggyback approach the iterations for z; and wy are initially affected by errors in the
state zj itself and this perturbation effect should be even more marked for the second order adjoints
wy,. To assess to what extent this effect slowed down their convergence we conducted the following
experiment. After 800 iterations when the state equation residual had already been reduced by a
factor of about 10° the derivative vectors Zj, Wy, and wj were reset to zero. In other words as far as
the derivatives are concerned we start from a point where the state equation is almost exactly solved
so that subsequent variations in the state approximation zj are rather small. In effect this way of
computing sensitivities amounts to the two-phase philosophy mentioned just before Proposition 1.
As one can see on the right half of Figure 3, the resulting derivative residual histories are rather
similar to the ones obtained right from the start. Some peaks have been eliminated but the overall
speed of convergence looks the same. Hence we can conclude that at least on this test problem the

Reduced Functions and Derivative 21

piggyback approach does not slow down convergence at all.

3 T T T T T T

2 o .

1 I 4
g 0F L |
S ,
Z -1 r 4
g) _“ﬁ“ﬁ\ """ i
-5 k\/\\ N

3 F) N\ -
T AN
= -4 r \\\ T
Conl _5 L \\\\\\ i
= 6l state equation residual — |

_7 | adjoint derivative residual T |

8 second order residual . . .

0 200 400 600 800 1000 1200 1400
Iteration
Figure 3: History of Residual Norms for y1 = es and & = ea, i.e. drag coeflicient and angle of attack

with reset of Z, w, and w to zero after 800 iterations

Moreover as we can see by carrying along adjoint derivatives right from the start we obtain
a much improved estimate for the reduced response function as displayed in Figure 4. The curve
labeled double represents the corrected function value estimate, which converges indeed significantly
faster and arrives after some 200 iterations an approximate value that should already be close
enough to decide whether the current design parameter settings are competitive or whether this
configuration should be rejected. On closer inspection of the distinctive maxima and minima
one finds that they occur for the corrected estimate at roughly half the number of iterations for
which they occur for the normal estimate. To illustrate this hypothesis we made the scaling of
the iterations logarithmic, which shows quite clearly that the two curves are shifted exactly by
1 =logy(2).

The same desirable situation prevails for the reduced response derivatives as displayed in Fig-
ure 5. These observations agree with the relations we derived in Proposition 3 for the special case
of a linear system with constant preconditioner. Hence we may expect that for certain smooth
nonlinear systems and the resulting iterations the carrying along of first [and possibly second]
order adjoint information yields the same response function and derivative estimates obtainable
by the original iteration [with directional derivatives | at half the number of iterations. Moreover
without any significant extra effort we obtain the full reduced gradient # = y¢' [and the Hessian
vector product z = "]. The statements in brackets apply only if the program in Table 4 rather
than the simple adjoint in Table 3 is executed.

The reduced gradient approximations of the lift coefficient y; and the drag coefficient y, with
respect to the angle of attack x; and the free-stream velocity x5 after 256, 512 and 1024 iterations
are listed in the following Table 5.

22

Response-Function

Response-Function

0.2845
0.284
0.2835
0.283
0.2825
0.282
0.2815
0.281
0.2805
0.28
0.2795

0.2845

Andreas Griewank and Christéle Faure

normal

400 600 800

1000 1200 1400
Iteration

Figure 4: Normal and corrected Response Function estimate for y = e,

0.284
0.2835
0.283
0.2825
0.282
0.2815
0.281
0.2805
0.28

0.2795

normal

4 16 64 256

Iteration (logarithmically scaled)

1024 4096

Figure 5: Normal and corrected Response Function estimate for y = e,

Reduced Functions and Derivative 23

The entries of Hessians of the drag coefficient 3, with respect to 1 and x5 converge as displayed
in Table 6.

Table 5: Reduced Jacobian Entries after 256, 512, and 1024 Iterations

dyy /dxy dyy /0o dyz /0y dyz /0y

256 2.03469 16.11593 0.51226 1.01937
512 2.03846 16.12873 0.51255 1.01997
1024 2.04191 16.14435 0.51272 1.02073

Table 6: Reduced Hessians Entries after 256, 512, and 1024 Iterations

0% yy) 0% 0?%yy /01 Oy 0?3/ 0x907, 0o/ 022

256 31.58015 —6.42395 —5.11607 —5.91265
512 21.94557 —14.98488 —14.45852 —10.25206
1024 20.92140 —15.36294 —15.35948 —10.50083

The entries in the second and third columns of Table 6 should be the same if the reduced Hessians
was evaluated exactly. Their discrepancies give an indication of how closely the exact values have
been approximated and whether the whole code has been correctly differentiated according to our
recipes in the first place.

15 - . - . - : . . ,
normal
1 B c‘/ \\\ u
o) [\
= 05 | \ P 1
g -
8
O """""" T N /ﬁ\ T
g __J
o
g 05 1
@
-1 F / -
- 1.5 I I I I I
1 4 16 64 256 1024 4096

Iteration (logarithmically scaled)

Figure 6: Normal and corrected Estimate of drag Coefficient (y = e1) derivative w.r.t. angle of attack

24 Andreas Griewank and Christéle Faure

8 Summary and Conclusion

On the basis of a given fixed point iteration for solving a state equation F'(z,2) = 0 with respect to
z we wish to calculate rapidly converging estimates for the reduced function f(z(z), «) and its total
derivatives with respect to z. This reduced gradient and a corrected version of the reduced function
p(z) = f(z(2),x) is obtained from the results of an adjoint fixed point iteration that can be grafted
onto the original user supplied solver. The corrected function estimate due to Christianson [Chr98]
is shown to converge twice as fast as the underlying fixed point iterations.

The same is true for the corrected estimates of reduced first derivatives, which are obtained
by a combination of adjoint and direct differentiation. The latter process generates feasible state
space directions, which yield also in combination with the Lagrange multipliers generated by the
adjoint differentiation reduced Hessians and other second derivative information. The algorithmic
development and convergence analysis was confirmed by test calculations on a 2D Fuler code. The
rapid availability of accurate estimates for the reduced response function and its derivatives should
facilitate the development of piggy-back design optimization methods that achieve optimality in
addition to feasibility at little extra cost.

The question whether and when derivatives should be carried along with the state iterates
themselves in a piggyback fashion cannot be answered in general. The same is certainly true
for the evaluation of reduced second derivatives, which are considerably more expensive but may
sometimes reduce the number of iterations considerably.

9 Acknowledgement

The authors are indebted to Vittorio Selmin, Alenia for supplying the Euler code and Michael
Giles, University of Oxford, for many corrections and suggestions on the basis of an early draft.

References

[Chr94] B. Christianson, Reverse accumulation and attractive fized points, Optim. Methods
Softw. 3 (1994), 311-326.

[Chr9g] B. Christianson, Reverse accumulation and implicit functions, Optim. Methods Softw.
9 (1998), 307-322.

[DS96] J.E. Dennis, Jr. and R.B. Schnabel, Numerical methods for unconstrained optimization
and nonlinear equations, Classics Appl. Math., no. 16, SIAM, Philadelphia, 1996.

[FE00] S.A. Forth and T.P. Evans, Aerofoil Optimisation via Automatic Differentiation of a
Multigrid Cell-Vertex Fuler Flow Solver, Proceedings of Automatic Differentiation 2000:
From Simulation to Optimization (Berlin), Springer Verlag, 2000.

[GBC193] A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson, Derivative conver-
gence of iterative equation solvers, Optimiz. Methods Softw. 2 (1993), 321-355.

[Gil92] J.Ch. Gilbert, Automatic differentiation and iterative processes, Optim. Methods Softw.
1 (1992), 13-21.

[Gil0O0] M.B. Giles, On the iterative solution of adjoint equations, Proceedings of Automatic
Differentiation 2000: From Simulation to Optimization (Berlin), Springer Verlag, 2000.

Reduced Functions and Derivative 25

[GriR0]

[Gri00]

[Jam95]

[NHJ+92]

[NS96]

[ORT0]

[PGO0]

[TKS92]

[VDOO]

A. Griewank, Starlike domains of convergence for Newton’s method at singularities,
Numer. Math. 35 (1980), 95-111.

A. Griewank, Fvaluating Derivatives, Principles and Techniques of Algorithmic Differ-
entiation, Frontiers in Appl. Math., no. 19, STAM, Philadelphia, 2000.

A. Jameson, Optimum aerdynamic design using cfd and control theory, 12th ATAA
Computational Fluid Dynamics Conference, AIAA Paper 95-1729 (San Diego, CA),
American Institute of Aeronautics and Astronautics, 1995.

P.A. Newman, G.J.-W. Hou, H.E. Jones, A.C. Taylor, and V.M. Korivi, Observations
on computational methodologies for use in large-scale, gradient-based, multidisciplinary
design incorporating advanced CFD codes, Technical Memorandum 104206, NASA Lan-
gley Research Center, February 1992, AVSCOM Technical Report 92-B-007.

S.G. Nash and A. Sofer, Linear and nonlinear programming, McGraw-Hill Series in
Industrial Engeneering and Management Science, McGraw-Hill, New York, 1996.

J.M. Ortega and W.C. Rheinboldt, [lterative solution of nonlinear equations in several
variables, Academic Press, New York, 1970.

N.A. Pierce and M.B. Giles, Adjoint recovery of superconvergent functionals from PDE
approzimations, SIAM Review 42 (2000), no. 2, 247-264.

S. Ta’asan, G. Kuruvila, and M.D. Salas, Aerdynamic design and optimization in one
shot, 30th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 91-0025 (Reno,
Nevada), American Institute of Aeronautics and Astronautics, 1992.

D. Venditti and D. Darmofal, Adjoint error estimation and grid adaptation for functional

outputs: application to quasi-one-dimensional flow, Journal of Computational Physics
164 (2000), 204-227.

