
Chapter 6

Implementation and Software

The techniques explained in Chapters 3 and 5 reveal correct sequence of op-
erations that the transformed program must perform in order to calculate the
correct derivative values. The insight that the AD framework gives us is valu-
able even if we propose to carry out the program transformation by modifying
the source code manually.

However, manual transformation is time consuming and prone to error. It is
also hard to manage; if the underlying program is subject to continual change,
then keeping track of these changes, in order to maintain the integrity of the
transformed version, is also time consuming. Therefore, it is usually desirable
to automate at least partially the process of transformation. Regardless of how
automatically, i.e., with what level of automation, program transformation is
done there is a trade-off between the sophistication of the transformation process
and the efficiency with respect to time and space bounds of the transformed
program. As a rule, a general-purpose AD tool will not produce transformed
code as efficient as that produced by a special-purpose translator designed to
work only with underlying code of a particular structure, since the latter can
make assumptions often with far-reaching consequences, where as the former
can only guess.

In many cases, an unsophisticated approach suffices to produce AD code that
is within a constant factor of the optimal performance bounds. In this situation,
subsequent effort is devoted just to reducing the value of the constant. In other
cases, a careful analysis of the structure of the code will reveal that several
orders of magnitude can be gained by the use of more sophisticated techniques,
such as preaccumulation (see section 10.2), or by the careful exploitation of
by-products of the underlying computation, such as LU decompositions, in the
derivative process (see Exercise 3.4). Such transformation processes may involve
a substantial amount of human intervention, including some modification of the
code, or a much greater degree of sophistication in the design of the automated
tools.

For example, our primary motivation might be the wish to explore new mod-
els or algorithms to see whether they merit further investigation. In this case the

111

112 Chapter 6. Implementation and Software

principal benefit of AD is the ability to provide accurate derivative information
for newly coded numerical functions while avoiding the labor traditionally asso-
ciated with developing accurate derivative evaluation code. Hence the emphasis
will be on the ease of the transformation process, rather than on the efficiency
of the transformed program.

Later, when our preferred model is stable, we may be willing to spend more
effort designing our code to produce derivative code that runs in the shortest
possible time. Later still, if our approach is a success and we wish to apply it
to larger and larger problems, we may be willing to spend more effort in devel-
oping a special-purpose AD tool designed to work only with this model and in
encapsulating our insights about the fundamental structure of the corresponding
programs.

The two basic computer science concepts employed in one guise or another
by AD implementers are operator overloading and source transformation per-
formed by compiler generators sometimes also called compiler-compilers. Al-
though operator overloading and source transformation may look very different
to the user, the end product is in both cases an object code, which we have
called eval der.obj in Fig. 6.1.

derspec

eval.src

a
u
g
m
e
n
t
a
t
io
n

eval++.src

derspec.dat

s
o
u
r
c
e
t
r
a
n
s
f
o
r
m
a
t
io
n

source transformation

com
pilation co

m
pi

la
ti

on

adclass.h

eval der.src

eval der.obj

operator overloading

Figure 6.1: From Function Sources to Derived Object Files

There we start with a source code eval.src that is either transformed into
another source eval der.src by a preprocessor or augmented to a program
eval++.src by the user before being compiled. Either modification requires
the selection of independent and dependent variables as well as the kind of
derivative objects and differentiation modes the programmer wishes to specify.
We have represented this information by the boxes derspec and derspec.dat,
but it can of course be imported in many different ways.

113

Subsequently either the source eval der.src or the source eval++.srcmust
be compiled, together with header files defining the new type of variable and
their operations included in the second case. In either scenario the resulting
object file eval der.obj may then be linked with a library of AD routines to
yield (possibly only a part of) an executable that evaluates derivative values
dy = ẏ, bx = x̄, and dbx = ˙̄x for given points x, directions dx = ẋ, adjoints
by = ȳ, etc, as depicted in Fig. 6.2. The execution may generate a considerable
amount of temporary data, which may be kept in internal arrays or flow out to
scratch files.

adlib.obj

eval der.obj
linking

x, dx, by, . . .

eval der.exe

y, dy, bx, dbx, . . .

scratch.dat

Figure 6.2: Linking and Executing Derived Object Files

There is no better way to understand AD than to implement one’s own
“baby” AD tool. But it is also worth pointing out that for many small- to
medium-size problems, particularly those where derivative calculation does not
account for a high proportion of the runtime requirements, a simple AD tool is
often perfectly adequate and has the added merit that it contains no unnecessary
features or bugs that the programmer did not personally put there.

Active and To-Be-Recorded Variables

The most basic task for the differentiation of a given evaluation code is the
identification of all variables that need to be active in the following sense. In the
computational graph discussed in section 2.2 all vertices lying on a path between
the minimal (independent) nodes and the maximal (dependent) nodes are active

because their values enter into the functional relation between at least one such
pair of values. Moreover, unless an active vertex enters only as argument into
linear operations, its value will also impact some partial derivative, namely,
entry of the overall Jacobian. As discussed in section 4.3, it will then have
to be saved during the forward sweep or recomputed during the return sweep.
Strictly speaking, the attribute active or to-be-recorded should be assigned to
each value computed during the evaluation of a code. In practice this decision is
usually taken for a computer variable, namely, a symbol within a certain scope,

114 Chapter 6. Implementation and Software

or at least for each one of its occurrences as a left-hand side of an assignment.
This simplification usually means that some values are treated as active, even
though that may not be necessary. Erring on the side of caution in this way
forgoes some potential gain of efficiency but entails no loss of correctness and
only rarely affects numerical accuracy. Naturally, variables or values that are
not selected as active are called passive throughout this book.

In the overloading approaches described in section 6.1 activity must be de-
cided for each program variable, which is then retyped accordingly. A simple
way to avoid this tedious task is to redefine in the evaluation code all doubles
to the active type adoubles. Here we assume tacitly that all active calculations
are performed in double precision. This brute force modification is used, for
example, in the Network Enabled Optimization Server (NEOS), which employs
ADOL-C for the differentiation of user codes written in C. The downside is that
many passive (i.e., nonactive) variables may be appended with derivative fields
whose value remains zero but that are nevertheless involved in many (trivial)
calculations. This effect can be partly overcome by using an activity analysis
at runtime as used, for example, by the newer versions of the C/C++ tools
ADOL-C and CppAD.

With a language translation approach, a great deal more can be done to
automate the dependence analysis required to determine which variables have
derivatives associated with them. Of course, where it is impossible to determine
at compile-time whether two variable values depend on each other, for example,
because array indices or pointers are manipulated in a complex way at runtime,
the translator must make a conservative assumption or rely on user-inserted
directives.

Overloading is a rather flexible technique and can usually deliver within a
constant factor of the theoretical performance bounds derived in Chapter 5.
However, the program transformation description that we give in section 6.2
should also provide some understanding of what is going on inside sophisticated
AD tools, so that programmers can choose an appropriate existing tool made
available by other people and configure it correctly for a particular problem,
or even develop application-specific tools themselves. Ultimately, we hope that
many others will be able to exploit the structure of their applications so as to
design new AD algorithms.

6.1 Operator Overloading

Overloading is supported by modern computer languages such as C++, Ada,
and Fortran 90. Certain considerations regarding the use of operator overloading
influence the choice of which language is appropriate. The main issues regarding
language capabilities for the purpose of AD by overloading are

• whether the assignment operator can be overloaded,

• what level of control the user is permitted to exercise over the management
of dynamically allocated memory,

6.1 Operator Overloading 115

• whether user-written constructor functions can be automatically called to
initialize user-defined data types, and

• whether user-written destructor functions can be automatically called to
do housekeeping when variables go out of scope and are deallocated.

By now, a large number of AD tools exist based on overloading in ADA (see, e.g.,
[BBC94]), Fortran 90 (see, e.g., [DPS89] and [Rho97]), C++ (see, e.g., [Mic91],
[GJU96], [BS96]), [Bel07]), and Matlab (see, e.g., [RH92] and [CV96]). There are
also some C++ implementations (see, e.g., [ACP99]) using expression templates
[Vel95] to generate derivative code that is optimized at least at the statement
level. In terms of runtime efficiency the selection of a suitable compiler and
the appropriate setting of flags may be as important as the choice of language
itself. Naturally, we cannot make any recommendation of lasting validity in
this regard as software environments and computing platforms are subject to
continual change.

The examples given below are coded in a subset of C++ but are carefully
designed to be easy to reimplement in other languages that support operator
overloading. Reading this chapter does not require a detailed knowledge of
C++, since we deliberately do not exploit the full features of C++. In partic-
ular, the sample code that we give is intended to illustrate the corresponding
algorithm, rather than to be efficient.

Simple Forward Implementation

In this section we describe a simple approach to implementing the basic forward
mode described in section 3.1. The implementation presented here is based
on the tapeless forward-mode of the AD tool ADOL-C. It propagates a single
directional derivative for any number of independent or dependent variables.

Implementing a Forward-Mode Tool

To build a simple forward-mode package, we need to carry out the following
tasks:

• Define the new data type or class that contains the numerical values of vi

and v̇i. Here, we will use the new class

class adouble

{ double val;

double dot; }

• Define arithmetic operations on the adouble class corresponding to the
usual floating point operations on scalars. These overloaded operations
must manipulate the second part of the adouble corresponding to v̇i cor-
rectly, according to the chain rule; see, for instance, Table 3.3. Some lan-
guages allow the programmer to define several different procedures with
the same name, but operating on or returning arguments of different types.

116 Chapter 6. Implementation and Software

For example, we may define a function sin that operates on a adouble

and returns another adouble.

adouble sin (adouble a)

{ adouble b;

b.val = sin(a.val);

b.dot = cos(a.val) * a.dot;

return b; }

For certain programming languages operator overloading allows the pro-
grammer the same freedom with symbols corresponding to the built-in
operations. For example, we might define the following multiplication of
adoubles.

adouble operator* (adouble a, adouble b)

{ adouble c;

c.val = a.val * b.val;

c.dot = a.dot * b.val + a.val * b.dot;

return c; }

In the case of binary operations, we also need “mixed-mode” versions for
combining adoubles with constants or variables of type double.

To reduce the likelihood of errors one may define the derivative field dot as
“private” so that the user can access it only through special member functions.

• Define some mechanism for initializing adouble components to the correct
values at the beginning, for example by providing the member functions
setvalue() and setdotvalue(). These functions should also be used
to initialized the derivative values of the independent variables. For ex-
tracting variable and derivative values of the dependent variables, member
functions like getvalue() and getdotvalue() should be available. Unini-
tialized derivative fields may default to zero.

In some applications one may wish to deliberately assign a double to an adouble.
Then one needs corresponding facilities.

• Conversions from doubles to adoubles may occur implicitly with the dot

value of the adouble set to zero. For example, a local variable a may be
initialized to zero by an assignment a=0 and later used to accumulate an
inner product involving active variables. In C++ [Str86] the assignment
operator may invoke a suitable constructor, that is, a user-supplied sub-
routine that constructs a adouble from given data. Here we may define
in particular the following constructor.

adouble::adouble (double value)

{ val = value;

dot = 0; }

6.1 Operator Overloading 117

This constructor sets the derivative field of a adouble to zero whenever it
is assigned the value of a passive variable. Another approach is to define
assignments of the form x = b by overloading the assignment operator.

adouble& adouble::operator= (double b)

{ val = b;

return *this; }

Note that this is the only point at which we have proposed to overload the
assignment operator. Some languages do not allow the assignment opera-
tor to be overloaded. Then such implicit conversions cannot be performed,
and one has to ensure full type consistency in assignments.

Using the Forward-Mode Tool

To apply our forward-mode AD implementation to a particular numerical pro-
gram, we need to make a number of modifications to the code that evaluates
the function. Minimizing these modifications is one of the design goals of AD
implementation, since rewriting large pieces of legacy code is not only tedious
but also error prone. The changes that cannot be avoided are the following.

Changing Type of Active Variables

Any floating-point program variable whose derivatives are needed must be active
and thus redeclared to be of type adouble rather than of type double.

Initializing Independents and their Derivatives

We also need a way of initializing independent variables. In the C++ package
ADOL-C [GJU96] the binary shift operator was overloaded such that the state-
ment x<<=b has the effect of specifying x an independent variable and initializing
its value to b. There exist several alternatives to this approach.

At the point where independent variables are assigned numerical values,
the corresponding derivative values should also be initialized, unless they may
default to zero.

Deinitializing Derivatives Dependents

At the point where the dependent variable values are extracted, the correspond-
ing derivative values can also be extracted.

Nothing else in the user-defined function evaluation code needs to change.
In particular, all the rules for derivative propagation are concealed in the AD
package nominated in a suitable header file.

118 Chapter 6. Implementation and Software

A Small Example of Simple Forward

As a small example for the simple forward-mode implementation presented here,
we consider the scalar-valued function

f : R
2 → R , f(x) =

n
∑

i=1

[

(

x1 − αi

)2
+

(

x2 − βi

)2
]

. (6.1)

Here we assume that the real scalars x =
(

x1, x2

)⊤
are the independent variables

and the parameters αi and βi are constants. One may be interested in the

directional derivative of f in direction ẋ =
(

ẋ1, ẋ2

)⊤
. For this purpose, first we

present the code to evaluate f(x). Note that cin and cout are the standard
input/output stream operations used in C++ to read and write variable values.

double alphai, betai;

double x1, x2, y;

cin >> x1, cin >> x2;

y = 0.0;

for (int i=0; i<n; i++)

{ cin >> alphai; cin >> betai;

y = y + (x1-alphai)*(x1-alphai) + (x2-betai)*(x2-betai);}

cout << y;

The augmented code to calculate the directional derivative is given below, where
the vertical bar | denotes a modified or inserted line.

1 double alphai, betai;

2 | adouble x1, x2, y;

3 | double dx1, dx2;

4 cin >> x1; cin >> x2;

5 | cin >> dx1; cin >> dx2;

6 | x1.setdotvalue(dx1);

7 | x2.setdotvalue(dx2);

8 y = 0.0;

9 for (int i=0; i<n; i++)

10 { cin >> alphai; cin >> betai;

11 y = y + (x1-alphai)*(x1-alphai) + (x2-betai)*(x2-betai);}

12 cout << y;cout << y.dot;

The changes introduced into the augmented program correspond to the points
enumerated at the beginning of this section, and the input/output stream oper-
ations have been overloaded to read and write adoubles, so that cin will assign
input values to the adoubles x and y, together with a dot value of zero.

The lines 4 to 7 of the augmented code correspond to the initialization in
the first loop of Table 3.4. The function evaluation in the second loop of Table
3.4 is performed in the lines 8 to 11. Line 12 represent the third loop of Table
3.4, namely, the extraction of the dependent variables.

6.1 Operator Overloading 119

Note, in particular, that the “main body” of the code, which actually cal-
culates the function value, is unchanged. Of course, in this tiny example the
main body is a relatively small proportion of the code, but in a more realistic
application it might constitute 99% of the code, including nested loops and re-
cursive procedure calls with parameter passing, as well as other programming
structures. Note that our example already includes overwriting of y. Apart
from redeclaring doubles as adoubles, no changes need be made to any of this
code. However, a judicious choice of all variables that must be redeclared be-
cause they are active as defined at the beginning of this chapter, may not be
easy. However, performing this selection carefully is important for efficiency to
avoid redundant calculations.

Vector Mode and Higher Derivatives

To evaluate a full Jacobian with a single pass of the forward-mode, we can
redefine the adouble type so that the dot field is an array of tangent components

class v_adouble with class vector

{ double val; {
vector dot; }; double comp[p]; };

where p is the number of directional components sought. For efficiency it is
preferable that p is a compile-time constant, but for flexibility it may also be
defined as a static member of the class vector.

We also define a number of overloaded operations on the type vector, for
example,

vector operator* (double a, vector b)

{ vector c;

for (int i=0; i<p; i++)

c.comp[i] = a * b.comp[i];

return c; }

Once we have done so, the same code used to define the overloaded operations
on scalars will also work correctly on vectors, allowing us to evaluate an entire
Jacobian or, more generally, an arbitrary family of tangents, in a single forward
sweep.

We can also extend the definition of a adouble to encompass higher-order
derivatives. For example, we can define a type

class s_adouble

{ double val;

double dot;

double dotdot; };

with appropriate overloaded operations acting on the various components to
compute second-order derivative, or a more general type Taylor.

120 Chapter 6. Implementation and Software

Simple Reverse Implementation

In this section we describe a simple approach to implementing the basic reverse
method introduced in section 3.2. This implementation evaluates a complete
adjoint vector. This adjoint vector can be a normal vector corresponding to
the gradient of one of the dependent variables, or it may be an arbitrary linear
combination of such normal vectors, for example, a set of constraint normals
scaled by Lagrange multipliers such as x̄⊤ =

∑

i ȳi∇xFi.
During the execution of the evaluation procedure we build up an internal

representation of the computation, which we will call here trace. The trace is
in effect a three-address code, consisting of an array of operation codes and
a sequence of variable indices, both encoded as integers. In addition to these
two symbolic data structures there is a third numerical record for storing the
floating-point numbers that represent the pre-values discussed in section 4.2.
Both the symbolic information and the numerical data may be reused in various
ways, so their distinct roles should be understood. Generally, the symbolic trace
is specific to overloading tools, whereas the record of pre-values occurs also in
source transformation based AD tools. The return sweep will be carried out
by a simultaneous interpretation of the three records, which are illustrated in
Fig. 6.3.

op trace

index trace

preval trace

operation

indices of variables involved

old value of left-hand side

Figure 6.3: Structure of the Traces

Implementing a Reverse Mode Tool

To build a simple reverse-mode AD package, we need to carry out six tasks.

• Define a new data type, here again called adouble, containing the numer-
ical value of vi and an identifier or index.

class adouble

{ double val;

int index; };

Additionally we need the trace consisting of the three arrays op trace,
index trace and preval trace to store information about the performed

6.1 Operator Overloading 121

operations, the involved variables and the overwritten variables, respec-
tively. Furthermore, a global variable indexcount is required to perform
bookkeeping about the already used indices. This set up is illustrated in
Fig. 6.3

• Corresponding to the usual floating-point operations on scalars, define
arithmetic operations of the adouble type. These overloaded operations
calculate the floating-point value for vi as usual, but as a side-effect they
also record themselves and their arguments in three arrays op trace,
index trace, and preval trace. For this purpose we also need to de-
fine an integer opcode for each of the elemental operations, for example,

const int

emptyv = 0, constv = 1, indepv = 2, bplusv = 3,

bminusv = 4, bmultv = 5, recipv = 6, ...

expv = 11, lnv = 12, sinv = 13, cosv = 14, ...

Then we may define typical operations as follows.

adouble sin (adouble a)

{ adouble b;

indexcount += 1;

b.index = indexcount;

put_op(sinv, op_trace);

put_ind(a.index, b.index, index_trace);

b.val = sin(a.val);

return b; }

adouble operator* (adouble a, adouble b)

{ adouble c;

indexcount += 1;

c.index = indexcount;

put_op(bmultv, op_trace);

put_ind(a.index, b.index, c.index, index_trace);

c.val = a.val*b.val;

return c; }

In the case of binary operations such as * we again need to provide “mixed-
mode” versions for combining adoubles with constants or variables of type
double. Assignments between adoubles and their initializations from
doubles must also be recorded as operations. For example, the overloaded
assignment operator to store the information required for the return sweep
may be defined by

adouble&adouble::operator = (adouble b)

{ put_val(val, preval_trace);

put_ind(b.index, index_trace);

122 Chapter 6. Implementation and Software

val = b.val;

index = b.index; }

• We also need a way of initializing independent variables (and setting
the corresponding adjoint values initially to zero). In the C++ pack-
age ADOL-C [GJU96] the binary shift operator was overloaded such that
the statement x<<=b has the effect of specifying x an independent vari-
able and initializing its value to b. There exist several alternatives to this
approach.

• Define a return sweep routine that reverses through the trace and cal-
culates the adjoint variables v̄i correctly, according to the adjoint evalua-
tion procedure with tape and overwrites given in Table 4.4. The routine
return sweep() consists basically of a case statement inside a loop. The
actual derivative calculation is performed by using the two additional ar-
rays value containing intermediate results and bar containing the deriva-
tive information.

void return_sweep()

{ while (NOT_END_OF_OPTAPE)

{ opcode = get_op(op_trace);

switch(opcode)

{ ...

case assignv:

res = get_ind(index_trace);

value[res] = get_val(preval_trace);

break;

...

case sinv:

res = get_ind(index_trace);

arg = get_ind (index_trace);

bar[arg] += bar[res]*cos(value[arg]);

break;

...

case bmultv:

res = get_ind(index_trace);

arg1 = get_ind(index_trace);

arg2 = get_ind(index_trace);

bar[arg1] += bar[res]*value[arg2];

bar[arg2] += bar[res]*value[arg1];

break;

... } } }

• Define some mechanism for extracting the current floating-point value
from an adouble, for initializing adjoint components to the correct values

6.1 Operator Overloading 123

at the beginning of the return sweep and for extracting gradient compo-
nent values when these become available at the end, in other words, define
routines value, setbarvalue, and getbarvalue.

• Define a routine resettrace() to indicate that the adjoint calculation is
finished such that the trace and the additional arrays can be reused for a
new derivative evaluation.

Using the Reverse-Mode Tool

To apply our reverse-mode AD implementation to a particular numerical pro-
gram, we need to make a number of modifications to the users code. More
specifically we must modify the evaluation routine that defines the function
to be differentiated and also the calling subprograms that invoke it to obtain
function and derivative values.

Changing Type of Active Variables

Just like in the simple forward implementation, all floating-point program vari-
ables that are active must be redeclared to be of type adouble rather than of
type double.

Initializing Adjoints of Dependents

At some point after the dependent variables receive their final values, the cor-
responding adjoint values must also be initialized as in Table 3.5.

Invoking Reverse Sweep and Freeing the Traces

Before the gradient values can be extracted, the return sweep routine must be
invoked. This invocation can take place from within the gradient value extrac-
tion routine. We need to indicate when the adjoint calculation is finished so that
we can reuse the storage for a subsequent derivative evaluation. Otherwise, even
a function with a small computational graph will exhaust the available storage
if it is evaluated many times.

Deinitialyzing Adjoints of Independents

When the adjoint calculation is completed, the corresponding derivative values
can be extracted.

Remarks on Efficiency

While the reverse implementation sketched here incurs some overhead costs; it
does bring out some salient features. Not only is the total temporal complexity
a small multiple of the temporal complexity of the underlying evaluation code,
but we observe that the potentially very large data structures represented by
the three trace arrays are accessed strictly sequentially.

124 Chapter 6. Implementation and Software

A Small Example of Simple Reverse

As a small example for the simple reverse-mode implementation discussed above,
we consider again the scalar-valued function (6.1) and corresponding evaluation
code given on page 118. The augmented code to calculate the gradient is
follows.

1 double alphai, betai;

2 | adouble x1, x2, y;

3 | double by, bx1, bx2;

4 cin >> x1; cin >> x2;

5 y = 0.0;

6 for (int i=0; i<n; i++)

7 { cin >> alphai; cin >> betai;

8 y = y + (x1-alphai)*(x1-alphai) + (x2-betai)*(x2-betai);}

9 | cin >> by;

10 | setbarvalue(y, by);

11 | return_sweep();

12 | getbarvalue(x1,bx1);

13 | getbarvalue(x2,bx2);

14 | resettrace();

Lines 5 to 8 correspond to the recording sweep of Table 3.7. The initialization
of the normal is done in lines 9 and 10. The second for-loop of the return sweep
in Table 3.7 is invoked in line 11. Lines 12 and 13 represent the final for-loop
of Table 3.7, namely, the extraction of the adjoint values.

6.2 Source Transformation

An AD tool based on operator overloading consists essentially of a library writ-
ten in the same language as the program to be differentiated. Its size can
be reasonably small. In contrast, source transformation is a more laborious
approach to implementing an AD tool, which is similar in its complexity to
developing a compiler. The source transformation description that we provide
in this chapter should facilitate some understanding of what is going on inside
sophisticated AD tools based on source transformation.

In the earliest days of AD (see, e.g., [Con78] and [KK+86]), users were
expected to completely rewrite their code, usually replacing all arithmetic op-
erations with function calls. Later software designers tried to live up to the
expectation generated by the label “automatic differentiation” by using prepro-
cessors (e.g., Augment used by Kedem [Ked80]) or overloading (e.g., in Pascal-
SC by Rall [Ral84]). Probably the first powerful general-purpose system was
GRESS, developed at Oak Ridge National Laboratory [Obl83] in the 1980s and
later endowed with the adjoint variant ADGEN [WO+87]. After the first in-
ternational workshop on AD in 1991 in Breckenridge, three large Fortran 77
systems were developed: ADIFOR [BC+92] at Argonne National Laboratory

6.2 Source Transformation 125

and RICE University; Odyssée [R-S93] at INRIA, Sophia Antipolis; and TAMC
as a one-man effort by Ralf Giering of the Meteorological Institute of Ham-
burg [GK98]. Currently, the tool Tapenade [HP04] is developed and maintained
at INRIA, Sophia Antipolis, and TAF [GK98] as successor of TAMC by the
company FastOpt. All these systems accept Fortran 77 codes that contain some
constructs of Fortran 90 and generate derivative code in the same language. A
similar one-man effort is PADRE2 [Kub96], which generates some scratch files
in addition to the derived source code; this is also true of GRESS/ADGEN.
While PADRE2 also calculates second-order adjoints, the other systems gener-
ate “only” first-derivative codes. In principle, however the source transformation
may be applied repeatedly, yielding second and higher derivative codes if ev-
erything goes well. Naturally, the symmetry of Hessians and higher derivative
tensors cannot be exploited by such repeated source transformations. Taylor
coefficients and derivative tensors of arbitrary order have been a key aspect of
the systems DAFOR [Ber90b] and COSY INFINITY [Ber95] by Martin Berz.
The system PCOMP [DLS95], developed by Klaus Schittkowski and his cowork-
ers, generates efficient derivative code from function specification in a restricted
Fortran-like language.

AD Preprocessors

AD preprocessors belong to a large family of static tools: they perform program
analysis or source transformation at compile time, without requiring input data
or running the program. Static tools may have various objectives, among which
one can find, for example, the compilation of source files into binary code, the
detection of runtime errors, and the instrumentation of source code. These tools
take as input a program written in a programming language (C, C++, Ada,
Fortran, Perl, and etc.), construct an internal representation of the program,
perform some analysis, and possibly transform the internal representation using
the result of the analysis: AD preprocessors are enhancers, that is, they generate
a new program that computes supplementary values, namely derivatives of the
values of interest with respect to input values. A key distinction from other
enhancers is that while efficiency of the generated program is of low priority in
most tools, for instance, when debugging a program or finding runtime errors,
it is highly important for AD. The fact that the generated code is meant to
be used in operational phase leads to specific concerns about the cost of the
derivatives compared to the original function.

Enhancer tools are built from four components, as shown in Fig. 6.4. The
parsing, printing, and optimization components are not specific to AD. There-
fore they are not described here in detail. For the transformation task, AD
preprocessors use general purpose data structures to internally represent the
program.

Among them one can find the following fundamental ones:

• The call graph represents the “call to” relation between procedures of
the program as a graph the nodes of which are the procedure names and

126 Chapter 6. Implementation and Software

parsing

original program

transformation printingoptimization

generated program

Figure 6.4: General architecture of a source preprocessor

one arc relates procedures P and Q if and only if P calls Q,

• The abstract syntax tree represents the procedures declarations and
statements of each procedure in the program in a syntactical way.

• The control flow graph represents the “successor” relation between
statements of a procedure as a graph the nodes of which are the statements
indices. One arc relates statements si and sj if and only if statement sj

must be executed directly after statement si.

• The data flow graph represents the “depends on” relation between
variables of a procedure/program as a graph the nodes of which are the
variables and an arc relates variables vj and vi if and only if the value of
variable vi is obtained directly from value of variable vj .

The differentiation of a program is a complex process that involving the enhance-
ment of the original program: one or more derivative statements are added in
forward or reverse mode for each original active statement. This objective can
be reached in two ways. One can apply differentiation to generate a completely
differentiated code, then apply slicing [Tip95] with respect to dependent and
independent variables to discard useless statements. This approach is called
context-sesitive differentiation. Alternativly, one can apply context-free dif-
ferentiation. The context-sesitive and context-free differentiation approaches
differ in that in context-free differentiation only active original statements with
respect to dependent and independent variables are differentiated, whereas in
context-sesitive differentiation all (real) original statements are differentiated.
Moreover, in context-free differentiation only variables whose values are neces-
sary for the evaluation of derivative values are recorded and retrieved, whereas
in context-sesitive differentiation the value of all modified variables is recorded
or retrieved.

For clarity of the following description of an AD preprocessor, some hypothe-
ses on the input code are imposed:

• Access paths to memory location are limited to scalar variable accesses
(i.e., component of array, fields of structures, and the like are not consid-
ered here).

6.2 Source Transformation 127

• Subprograms are limited to procedures (functions, function pointers, vir-
tual functions, arrays of functions and the like are not considered here).

• Input/output statements are considered as passive statements and are
therefore not differentiated.

• Goto, jump, and exit statements are not dealt with.

With these restrictions, the description below is independent of the program-
ming language and much simpler than a complete specification. At the same
time, the description is general enough to give an overview of the method.
Moreover, it allows straightforward extensions to overcome these restrictions.

In forward mode, the calculation of the derivative values is performed in the
same order as for the original values. Consequently, the control flow (branches,
loops) and the structure (procedure definitions and calls) of the program can
be maintained.

Implementing a Forward-Mode Tool

The simplest version of a forward-mode tool first copies the original abstract
syntax tree to obtain the derivative abstract syntax tree, which is then trans-
formed by applying recursively the following forward differentiation rules:

• An assignment is differentiated by

1. generating the derivative assignments according to section 3.1,
2. associating new indices to the derivative statements,
3. inserting the new statements before the original one,
4. updating the control flow graph by adding the new arcs and modi-

fying the old ones.

• A call to a procedure eval
(

x, y
)

is differentiated by

1. generating a new call eval tang
(

x, dx, y, dy
)

,
2. associating the new call to a new index,
3. replacing the original call by the new call,
4. replacing the name of the original procedure by the name of the

differentiated procedure in the call graph,
5. updating the control flow graph by adding the new arcs and modi-

fying the old ones.

• A control statement is differentiated by keeping the control as it is and
applying the rules to the statements from the body.

• Any other statement is left unchanged.

• A body is differentiated by applying the differentiation rules to the state-
ments from the body line by line and concatenating the results in the
original statement order.

128 Chapter 6. Implementation and Software

• A declaration is differentiated by

1. generating the derivative declaration as a copy of the original dec-
laration for the derivative variable,

2. inserting the derivative declaration before the original one,

• A procedure feval
(

x, y
)

is differentiated by

1. generating the derivative header feval tang
(

x, dx, y, dy
)

from the

original header feval
(

x, y
)

,
2. generating the derivative declarations from the original ones,
3. generating the derivative body from the original body,
4. replacing each procedure declaration component by its derivative

counterpart in the original declaration.

• A program is differentiated by applying the differentiation rules to the
global declarations and each procedure in the program.

Note that the call- and control-flow-graphs are updated during the transfor-
mation of the abstract syntax tree. This method is easily extendable to all
forward-mode variants.

Using the Forward-Mode Tool

Using the forward-mode tool, the user gives as input the source files of the
program that defines the function to be differentiated and simply runs the AD
preprocessor to generate the derivative source program. Note that the derivative
program must be modified to initialize the independent derivative variables to
the required values. Then, the derivative program may be used as any user-level
program to obtain the derivative values.

We consider the same example as in section 6.1 on operator overloading. In
context-sesitive mode, the forward AD tool generates the following.

1 | double dalphai, dbetai;

2 double aplha1, beta1;

3 | double dx1, dx2, dy;

4 double x1, x2, y;

5 cin >> dx1, cin >> dx2;/* Added by the user */

6 cin >> x1, cin >> x2;

7 | dy = 0.0;

8 y = 0.0;

9 for (int i=0; i<n; i++)

10 { cin >> alphai; cin >> betai;

11 cin >> dalphai; cin >> dbetai; /* Added by the user */

12 | dy = dy + 2*(x1-alphai)*dx1 - 2*(x1-alphai)*dalphai +

13 | 2*(x2-beta2i)*dx2 - 2*(x2-beta2i)*dbetai;

14 y = y + (x1-alpha1)*(x1-alphai) + (x2-betai)*(x2-betai); }

15 cout << dy; /* Added by the user */

16 cout << y;

6.2 Source Transformation 129

Here we have marked each extra line added by the AD preprocessor with a
vertical bar. Lines 5 to 8 of the generated code correspond to the initialization
in the first loop of Table 3.4. The function evaluation continued in lines 9 to 14
represents the second loop of Table 3.4. The extraction of the computed values,
i.e., the third loop of Table 3.4 is performed in the lines 15 and 16.

As we said before, the generated code is suboptimal: if only the derivative
with respect to x1, x2 is required, alphai and betai are passive, and the only
nonzero contributions to the computation of dy are the first and the term of
the right-hand side. In context-free mode, the evaluation of dy will contain only
these two non-zero terms.

Note that in this code, the initialization of the derivative values is performed
by reading in the values from the standard stream and the derivative values are
printed on the standard stream. Because of the limitations described above,
these statements are input/output and must be added by the user in the deriva-
tive program.

Implementing a Reverse-Mode Tool

In reverse mode, the evaluation of the derivative values is performed in the
reverse order with respect to the original values. This makes the evaluation of
the derivative statement more complex than in forward mode.

This section shows the simplest implementation of the reverse-mode: each
derivative procedure executes the forward sweep (the original procedure and the
storage of the pre-values of the assigned variables), and the return sweep (the
values are restored and the derivatives are computed). This strategy is often
used when writing adjoint code by hand because of its simplicity. Other strate-
gies (including loop checkpointing) can be implemented by simply combining
the forward/return sweeps described above in different manners as discussed in
Chapter 12.

A reverse-mode AD preprocessor may proceed in the same way as the forward-
mode tool: it duplicates the original syntax tree to generate the forward sweep
and inverts it to obtain the return sweep. This approach does not work for
programs with goto, jump, or exit statements. To handle such constructs, the
transformation must be applied on the control flow graph instead of the syntax
tree.

The abstract syntax tree is transformed by applying recursively the following
reverse differentiation rules that construct the forward and return sweeps in
parallel.

130 Chapter 6. Implementation and Software

• An assignment is differentiated by

1. generating the derivative assignments by using the rules from sec-
tion 3.2,

2. generating the store and restore statements for the modified variable,
3. associating new indices to the derivative and record/retrieve state-

ments,
4. inserting the record and original statements in the forward sweep,
5. inserting the retrieve and derivative statements in the return sweep,
6. updating the control flow graph.

• A call to a procedure eval
(

x, y
)

is differentiated by

1. generating a new call eval dual
(

bx, x, by, y
)

2. generating the store and retrieve statements for the modified param-
eters,

3. associating the derivative call and record/retrieve statements to new
indices,

4. inserting the record statements and original call statement in the
forward sweep,

5. inserting the retrieve and derivative statements in the return sweep,
6. updating the call graph,
7. updating the control flow graph.

• A branch statement is differentiated by

1. applying the differentiation rules to the statements in the body and
generating the forward and return sweep bodies,

2. generating the forward branch statement by replicating the original
test and inserting the forward sweep body,

3. generating the return branch statement by replicating the original
test and inserting the return sweep body,

4. inserting the forward branch in the forward sweep,
5. inserting the return branch in the return sweep,
6. updating the call graph,
7. updating the control flow graph.

• A loop statement is differentiated by

1. applying the differentiation rules to the statements to the statements
in the body and generating the forward and return sweep bodies,

2. generating the forward loop statement by replicating the original
header and inserting the forward sweep body,

3. generating the return loop statement by reverting the original header
and inserting the return sweep body,

4. inserting the forward loop in the forward sweep,
5. inserting the return loop in the return sweep,
6. updating the call graph,
7. updating the control flow graph.

• Any constant statement is added to the forward sweep with no counter-
part in the return sweep.

6.2 Source Transformation 131

• A procedure is differentiated by

1. generating the derivative declaration as a copy of the original dec-
laration for the derivative variable,

2. inserting the derivative declaration before the original one,

• A body is differentiated by applying the differentiation rules to the state-
ments from the sequence in order: each statement of the forward sweep is
concatenated at the end of the of the forward sweep body and each dif-
ferentiated statement is concatenated at the beginning of the the return
sweep body,

• A procedure with header feval
(

xl, yl
)

is differentiated by

1. generating the derivative header feval dual
(

bxl, xl, byl, yl
)

,
2. replacing the procedure header by the derivative header,
3. replacing the procedure declaration by the derivative declaration,
4. replacing the procedure body by the derivative body.

• A program is differentiated by applying the differentiation rules to the
global declarations and each procedure in the program.

Note that the call and control flow graphs are updated during the transformation
of the abstract syntax tree.

The choice of the store/restore implementation is of great impact on the
efficiency of the derivative program but is language and machine dependent and
is therefore not described here.

Using the Reverse-Mode Tool

The reverse-mode AD preprocessor is used in the same way as a forward-mode
AD preprocessor: the user gives as input all the source files of the program,
simply runs the tool and insert the initializations of the derivative variables.
Then, the derivative program may be used as any other user-level program to
obtain the derivative values.

For the same example as in section 6.1, the context-sensitive reverse mode
tool generates the following.

1 | double save_aplhai, save_betai;

2 | double balphai, bbetai;

3 double aplha1[n], beta1[n];

4 | double bx1, bx2, by;

5 | double save_y[n];

6 double x1, x2, y;

7 cin >> x1; cin >> x2;

8 y = 0.0;

9 for(int i=0; i<n; i++)

10 { cin >> alphai; cin >> betai;

11 | save_alphai[i] = alphai;

12 | save_betai[i] = betai;

13 | save_y[i] = y;

132 Chapter 6. Implementation and Software

14 y = y + (x1-alphai)*(x1-alphai) + (x2-betai)*(x2-betai); }

15 cout << y;

16 cin >> by; /* Added by the user */

17 | bx1 = 0.0;

18 | bx2 = 0.0;

19 | balphai = 0.0;

20 | bbetai = 0.0;

21 | for (int i=n-1; i>=0; i--)

22 | { alphai=save_alphai[i];

23 | betai=save_betai[i];

24 | y=save_y[i];

25 | bx1 += bx1 + 2*(x1-alphai)*by;

26 | balphai -= 2*(x1-alphai)*by;

27 | bx2 += 2*(x2-beta2i)*by;

28 | bbetai -= 2*(x2-beta2i)*by; }

29 cout << bx1; /* Added by the user */

30 cout << bx2; /* Added by the user */

31 cout << balphai; /* Added by the user */

32 cout << dbetai; /* Added by the user */

Note that as in forward-mode, the initialization and retrieval of the deri-
vative have been added manually but could have been generated automatically.
Lines 7 to 15 represent the recording sweep of Table 3.7. The second for-loop
of the return sweep in Table 3.7 can be found in lines 21 to 28. Lines 29 to 32
correspond to the final loop of the return sweep in Table 3.7. The generated
code is suboptimal: if only the derivative with respect to x1, x2 were required,
balphai and bbetai should appear, which happens in context-free mode.

Context-Sensitive Transformation

If the source transformation methods presented above are applied, all (real)
input variables are considered as independent, and all (real) output variables
are considered as dependent variables. Hence all values of all modified variables
are stored and restored in reverse mode. This naive approach corresponds to
the brute-force use of the operator overloading tool when all double variables
are retyped as adouble.

To generate a program that computes the derivative of the dependent with
respect to the independent variables, the dispensable derivative statements must
be discarded by an optimization phase, or the active statements must be deter-
mined and the differentiation process must be applied only to them. Identifying
the useless statements by program optimization is much more expensive than
not generating them in the first place.

The general purpose AD preprocessors apply a static analysis generally called
“activity analysis” to detect whether a particular variable, statement, or proce-
dure is to be considered active with respect to the independent and dependent
variables. The AD preprocessor optimizes the generated code by generating

6.3 AD for Parallel Programs 133

derivatives only for active program components (variable, statement, proce-
dure). The activity analysis is performed on the original program before the
forward or reverse mode differentiation and allows for the generation of an bet-
ter derivative program by avoiding the differentiation of passive statements as
much as possible.

In the same manner, storing and retrieving the values as it is performed in
the naive reverse transformation are not efficient: the values of y are recorded
all along the forward loop and restored all along the backward loop even though
the value of y is not used. The “to-be-recorded analysis” described in [FN01]
is also an a priori analysis that allows one to know for each occurrence of each
variable whether it has to be recorded. However, this analysis has not yet been
implemented in general purpose AD tools.

Note that, if the programming language allows the use of pointers, the previ-
ous analysis must be performed modulo aliases. Hence, for example, if a variable
is active, all its aliases are also active. Alias analysis is a difficult subject on
which a lot of work has been done (see, e.g. [Sta97, Deu94]), but it is not a
problem specific to AD and is therefore not described here.

6.3 AD for Parallel Programs

The widespread use of large clusters and the advent of multicore processors have
increased the push toward automatic differentiation of programs that are writ-
ten by using libraries such as MPI [MPI] for message passing or pragma-based
language extensions such as OpenMP [OMP]. The topic was first investigated
in [Hov97]. We cannot hope to cover all the concepts by which parallel com-
puting is supported, but we want to concentrate on the most important aspects
of message passing as standardized by MPI and code parallelization enabled
by OpenMP. The main problems arise in the context of source transformation
AD but a few are applicable to AD via operator overloading as well. In prac-
tice, source transformation AD tools so far have limited coverage of parallel
programming constructs.

Extended Activity Analysis

The preceding section discussed activity analysis, which determines the pro-
gram variable subset that needs to carry derivative information. The data flow
analysis described in section 6.2 covers the constructs of the respective program-
ming language but not dependencies that are established through library calls
such as MPI’s send, recv, or the collective communication operations. On the
other hand, these hidden dependencies clearly do not originate only with MPI
constructs. The same effect can easily be recreated in sequential programs, for
instance, by transferring data from program variable a to b by writing to and
reading from a file.

The default solution to this problem is the assumption that any program
variable b occurring in a recv call potentially depends on any variable a occur-

134 Chapter 6. Implementation and Software

ring in an send call. In many practical applications this leads to a considerable
overestimate of the active variable set. A recent attempt to reduce this overesti-
mate is the MPI-enhanced control flow graph introduced in [SKH06]. A simple
example of such a graph is shown in Fig. 6.5. We have a simple switch based
on the MPI process rank (0-3) that determines the behavior for four processes
executing in parallel. We start with the conservative assumption that all recvs
are connected to all sends. In MPI the parameters that identify matching com-
munication points are communicator, tag, and source/destination pairs. The
communicator identifies a subset of the participating processes, the tag is an in-
teger message identifier, and the source and destination are the process numbers
within the respective communicator. The analysis on the MPI-enhanced con-
trol flow graph uses constant propagation to establish guaranteed mismatches
between send/recv pairs and to exclude certain dependencies. For simplicity
we left out the communicator and source/destination parameters in Fig. 6.5 and
indicate only the potential data flow dependencies between the send and recv

buffers.

0
1 2

3

send(a,tagA) send(b,tagB)

recv(c,tagC) recv(d,tagD)

switch(procRank)

end switch

Figure 6.5: A Control Flow Graph Enhanced with Potential Communication Edges.

If the code before the switch vertex contained assignments for the tags, for
example, tagA=tagC=1; tagB=tagD=2, then the analysis can propagate these
constants, determine the mismatch, remove the two diagonal communication
edges, and thereby exclude the dependence of d on a and of c on b. Collective
communications are handled in a similar fashion. While this approach is fully
automatic, its efficacy depends to some extent on the coding style of the original
program. Complementing the appropriate use of the identifying parameters can
be optional pragmas to identify communication channels. The idea was first
introduced in [Fos95] (Chapter 6), but no AD preprocessor has implemented
this concept yet.

A different set of questions arises when one considers the implications for
the data dependencies that can be inferred from OpenMP directives. Fig. 6.6
shows an example for a parallelizable loop where the actual dependencies are
obfuscated by potential aliasing between arrays and by using a computed ad-
dress that cannot be resolved with the typical induction variable mechanisms.
Considering the main OpenMP workhorse omp parallel do, the need for this
directive presumably is rooted in the inability of the automatic data flow and

6.3 AD for Parallel Programs 135

dependence analyses to remove enormous dependencies from the conservative
overestimate. Otherwise an autoparallelizing compiler could verify that the loop
in question is indeed free of loop-carried dependencies and could generate paral-
lel instructions right away. That is, one would not require an OpenMP directive
in the first place. In turn, an AD tool that is aware of such parallelization direc-
tives can use the implied dependency exclusions to enhance the analysis result.
In our example in Fig. 6.6 an omp parallel do directive implies that a[i+o]

does not overlap with b[i], and therefore the data flow analysis does not need
to propagate along the dashed edges. This situation might not be automati-
cally detected because the code analysis has to prove that the computed offset
always yields a value ≥k and the arrays a and b are not aliased. Conservatively
the analysis assumes loop-carried dependencies (dashed edges) preventing an
automatic parallelization.

a[i+o]=sin(a[i])*b[i];

o=offset(i);

loop i=1; i<k; ++i

end loop

Figure 6.6: A Control Flow Graph with a Parallelizable Loop.

Further consequences of OpenMP directives on the reverse-mode code gen-
eration, are explained at the and of this section.

Parallel Forward Mode

From a naive point of view the transformation of a given parallel program for
forward mode would amount to merely mirroring the parallelization constructs
for the derivative data. There are, however, a number of technical problems and
the potential for amplifying a load imbalance that the reader should be aware
of.

In a simple implementation, the forward mode adds derivative data and op-
erations for derivative computations in a uniform fashion to the entire original
program. Section 4.5 gives a theoretical overhead factor ∈ [2, 5/2] for the for-
ward mode. When one employs vector forward mode with p directions, this
overhead factor grows with a problem-dependent fraction of p. Consequently,
runtime differences caused by a load imbalance that were already present in
the original program will be amplified by this factor; see also [RBB07]. An
AD-specific source of load imbalance in forward mode is the propagation of

136 Chapter 6. Implementation and Software

dynamic sparse vectors [BK+97], when the nonzero elements are distributed
unevenly across the processes.

The correct association between program variables and their respective deriva-
tives under MPI might be considered a negligible implementation issue but has
been a practical problem for the application of AD in the past [HB98, CF96].

There is a noteworthy efficiency aspect to the differentiation of reduction op-
erations. A good example is the product reduction which is logically equivalent
to the Speelpenning example discussed in section 3.3. Here, as well as in the
other cases of arithmetic operations encapsulated within the MPI library calls,
a direct AD transformation of the MPI implementation is not recommended.
One has to determine a way to compute the product itself, the partial deriva-
tives and propagate the directional derivatives. The computational complexity
becomes easier to understand if one considers the reduction operations on a
binary tree, as was done in [HB98]. The best forward-mode efficiency would be
achieved with a special user-defined reduction operation that, for each node c in
the tree with children a and b, simply implements the product rule ċ = bȧ + aḃ
along with the product c = ab itself. This approach allows the complete execu-
tion in just one sweep from the leafs to the root. Details on this topic can be
found in [HB98]. MPI provides a user interface to define such specific reduction
operations.

For OpenMP one could choose the safe route of reapplying all directives
for the original program variables to their corresponding derivatives and stop
there. When one considers the propagation of derivatives in vector mode, it can
be beneficial to parallelize the propagation. When the derivative vectors are
sufficiently long, a speedup of more than half the processor count was achieved
for moderate processor counts [BL+01]. The approach made use of the OpenMP
orphaning concept, which permits specifying parallelization directives outside
the parallel region in which they are applied. The parallelization directives are
applied to the routines that encapsulate the propagation without the overhead
of parallel regions that are internal to these routines. In [BRW04] the concept of
explicitly nesting the parallelization of the derivative vector propagation inside
the given parallelization was explored, aimed at using a larger number of threads
for the computation. The theoretical benefits have not yet been exploited in
practice.

Parallel Reverse Mode

Solving the problems mentioned in previous two subsections is a prerequisite
for generating the adjoint model for a parallel program. One can consider a
send(a) of data in a variable a and the corresponding recv(b) into a variable
b to be equivalent to writing b=a. The respective adjoint statements are ā+=b̄;
b̄=0. They can be expressed as send(b̄); b̄=0 as the adjoint of the original recv
call and recv(t); and ā+=t as the adjoint of the original send call, using a
temporary variable t of matching shape. This has been repeatedly discovered
and used in various contexts [FDF00, Cha90].

Interpreting a recv call as an assignment b = a, it is clear that one has

6.3 AD for Parallel Programs 137

to replicate all the actions to record and restore the old values overwritten by
the call to recv(b) when this is warranted, e.g. by TBR analysis. To keep
the examples simple, here we omit the recording code altogether and also leave
out any statements in the return sweep that would restore recorded values in
overwritten recv buffers.

A concern for parallel programs is the correctness of the communication
patterns and, in particular, the avoiding of deadlocks. Proving that a given
program is free of deadlocks in practice is possible only for relatively simple
programs. A deadlock can occur if there is a cycle in the communication graph.
The communication graph for a program (see, e.g., [SO98]) is similar to the
MPI-enhanced control flow graph shown in our example in Fig. 6.5; but instead
of just adding edges for the communication flow, the communication graph also
contains edges describing the dependencies between the communication end-
points. Often the noncommunication-related control flow is filtered out. The
cycles relevant for deadlocks have to include communication edges – not just, for
instance, loop control flow cycles. For the plain (frequently called “blocking”)
pairs of send/recv calls, the edges linking the vertices are bidirectional because
the MPI standard allows a blocking implementation; that is, the send/recv call
may return only after the control flow in the counterpart has reached the re-
spective recv/send call. A cycle indicating a deadlock and the use of reordering
and buffering to resolve it are shown in Fig. 6.7.

send

recv recv

P1 P2

send

P1 P2

send

recvsend

recv

P1 P2

bsend

recv recv

bsend

Figure 6.7: Deadlock, Reordered send/recv, buffered sends.

In complicated programs the deadlock-free order may not always be appar-
ent. For large data sets one may run out of buffer space, thereby introducing a
deadlock caused by memory starvation. A third option to resolve the deadlock,
shown in Fig. 6.8, uses the non-blocking isend(a,r) which keeps the data in
the program address space referenced by variable a and receives a request iden-
tifier r. The program can then advance to the subsequent wait(r) after whose
return the data in the send buffer a is known to be transmitted to the receiving
side. After the wait returns, the send buffer can be overwritten. The options
for treating such programs have been explored in [TBD].

For the adjoint of the parallel program and the corresponding adjoint com-
munication graph, the direction of the communication edges needs to be re-
versed. This imposes rules on the choice of the send call as the adjoint for a
given recv and the treatment of wait calls. We can determine a set of patterns
where simple rules suffice for the adjoint generation. To limit the number of
distinct cases we assume that send(a) is equivalent to isend(a,r); wait(r)

and similarly for recv.

138 Chapter 6. Implementation and Software

P1

fo
rw

ar
d P2

wait(r) wait(r)

recv()b

isend(,r)a

recv()b

isend(,r)a

P1

re
tu

rn

P2

wait(r); +=t

irecv(t,r)

wait(r); +=t

irecv(t,r)

a a

send(); =0b b send(); =0b b

Figure 6.8: Nonblocking Send isend Followed by wait to Break Deadlock.

The straight forward edge direction reversal as shown in Fig. 6.8 is implied
when the original program contains only calls fitting the adjoining rules listed
in Table 6.1. We omit all parameters except the buffers a, b, and a temporary
buffer t and the request parameter r for non-blocking calls.

Table 6.1: Rules for Adjoining a Restricted Set of MPI send/recv Patterns.

Forward Sweep Return Sweep
Call Paired with Call Paired with

1 isend(a,r) wait(r) wait(r);ā+=t irecv(t,r)

2 wait(r) isend(a,r) irecv(t,r) wait(r)

3 irecv(b,r) wait(r) wait(r);b̄=0 isend(b̄,r)
4 wait(r) irecv(b,r) isend(b̄,r) wait(r)

5 bsend(a) recv(b) recv(t);ā+=t bsend(b̄)
6 recv(b) bsend(a) bsend(b̄);b̄=0 recv(t)

7 ssend(a) recv(b) recv(t);ā+=t ssend(b̄)
8 recv(b) ssend(a) ssend(b̄);b̄=0 recv(t)

The combinations of nonblocking, synchronous, and buffered send and re-
ceive modes not listed in the table can be easily derived. As evident from
the table entries, the proper adjoint for a given call depends on the context in
the original code. One has to facilitate the proper pairing of the isend/irecv
calls with their respective individual waits for rules 1–4 and also of send mode
for a given recv for rules 5–8. An automatic code analysis may not be able
to determine the exact pairs and could either use the notion of communication
channels identified by pragmas or wrap the MPI calls into a separate layer. This
layer essentially encapsulates the required context information. It has distinct
wait variants and passes the respective user space buffer as an additional argu-
ment, for example, swait(r,a) paired up with isend(a,r). Likewise the layer
would introduce distinct recv variants; for instance, brecv would be paired
with bsend.

Multiple Sources and Targets

In the examples considered so far, we have had only cases where the communi-
cation edges in the communication graph had single sources and targets. This
is a critical ingredient inverting the communication. There are three common

6.3 AD for Parallel Programs 139

scenarios where the single source/target property is lost.

1. Use of wildcard for the tag or the source parameter

2. Use of collective communication (reductions, broadcasts, etc.)

3. Use of the collective variant of wait called waitall

The use of the MPI wildcard values for parameters source or tag implies
that a given recv might be paired with any send from a particular set; that is,
the recv call has multiple communication in-edges. Inverting the edge direction
for the adjoint means that we need to be able to determine the destination. A
simple solution is to store the values of the actual tag and source during the
recording sweep which may then be retrieved through MPI calls. Conceptually
this means that we pick at runtime an incarnation of the communication graph
in which the single source/target property is satisfied and that therefore can
be inverted by replacing the wildcard parameters in the return sweep with the
previously recorded actual values.

For collective communications the transformation of the respective MPI calls
is essentially uniform across the participating calls. To illustrate the effect, we
can consider a product reduction followed by a broadcast of the result, which
could be accomplished by calling allreduce but here we want to do it explicitly.
Essentially we compute the product p =

∏

ai and broadcast the value to all
processes i so that bi = p, ∀i. The apparent adjoint is the summation reduction
p̄ =

∑

b̄i followed by a broadcast of p̄ and subsequent increment āi += p

ai

p̄
assuming p 6= 0. The respective communication graphs are shown in Fig. 6.9
the processes to retain their rank between the forward and the reverse sweep.

The calculation of ∂p/∂ai as p/ai does not work when ai = 0 and may be
inaccurate when ai ≈ 0. In section 3.3, we recommend a division-free way of
differentiating Speelpenning’s product, which has a similar operations count but
less parallelism.

P

P
i

j

P

bcast()

reduce(, ,*)

root
breduce(, ,*)a

reduce(, ,*)a b

a b

bcast()

bcast()b

b

b

P

P
i

j

Proot
bcast(t); +=...

bcast(t); +=...

reduce(,t,+)
bcast(t); +=...

a

a

a

b

breduce(,t,+)

reduce(,t,+)b

Figure 6.9: Adjoining of Collective Reduction and Broadcast.

Similar to treating the reduction in forward mode, there is again an efficiency
concern that is best visualized by considering an execution of the reduction on
a tree. In principle, the partials could be computed explicitly by using prefix
and postfix reduction operations during the recording sweep. Alternatively,
one could record the ai and then in the return sweep first compute all the

140 Chapter 6. Implementation and Software

intermediate products from the leaves to the root in the reduction tree followed
by propagating the adjoints from the root to the leaves. This approach requires
only two passes over the tree and is less costly than any approach using the
explicit computation of the partials. Unlike the custom reduction operation
for the forward case or the explicit partials computation using pre- and postfix
reductions, MPI does not provide interfaces facilitating the two-pass approach.
Consequently, one would have to implement it from scratch.

The use of waitall as a collective completion point poses the most complex
problem of adjoining MPI routines that AD, at least in theory, can handle at
the moment. This is a commonly used MPI idiom and occurs, for instance,
in the logic of the MIT general circulation model [MIT]. There the adjoint
MPI logic for the exchange of boundary layers of the grid partitions has been
hand-coded because currently no source transformation tool can properly han-
dle non-blocking MPI calls. Any change to the grid implementation necessitates
a change to the respective hand-coded adjoint. This and the desire to provide
choices for the grid to be used illustrate the practical demand for such capabil-
ities.

Both the use of non-blocking point-to-point communications and the associ-
ated collective completion aim at reducing the order in processing the messages
imposed on the message passing system by the program that uses it. Often such
a program-imposed order is artificial and has been shown to degrade the effi-
ciency on processors with multiple communication links. While one can imagine
many different orders of calls to isend, irecv, and wait, without loss of gener-
ality we consider a sequence of isend calls, followed by a sequence of irecv calls
followed by a waitall for all the request identifiers returned by the isends and
irecvs. For simplicity we assume all processes have the same behavior. We dis-
tinguish the buffers by an index, denote r as the vector of all request identifiers
(r1,r2,. . .), and show in the communication graph only placeholder communi-
cation edges that refer to nodes in the representer process; see Fig. 6.10.

One could, of course, separate out all requests, introduce individual wait
calls and follow the recipe in Table 6.1. That approach, however, imposes
an artificial order on the internal message-passing system, which the use of
waitall tries to avoid. Instead we introduce a nonoperational counterpart
with nonoperational communication edges in the original code and perform a
simple vertex transformation in which the original waitall vertex along with
its problematic edges are rendered nonoperational, as shown in Fig. 6.10. The
completion waitall has multiple communication in-edges which makes a simple
vertex based adjoint transformation impossible. Instead we can introduce a
symmetric nonoperational counterpart anti wait denoted as awaitall in the
recording sweep and form the adjoint by turning the awaitall into a waitall

and the original waitall into the non-operational awaitall in the return sweep.
With the transformations performed in the fashion suggested, we can now

state that we are able to generate the adjoint communication graph by reversing
the edge direction. Consequently, if the original communication graph was free
of cycles then the adjoint communication graph also will be free of cycles and
we can be certain that the adjoint transformations do not introduce deadlocks.

6.3 AD for Parallel Programs 141

waitall(r)

1

2

isend(,r)

2

1

irecv(,r)i+1i+1

irecv(,r)i+2 i+2

b

b

b

b

isend(,r)

forward

waitall(r)

isend(,r)

1

2

isend(,r)

2

1

irecv(,r)i+1i+1

irecv(,r)i+2 i+2

awaitall(r)

b

b

b

b

recording

1

2 2

1

i+1i+1

i+2 i+2

awaitall(r)

isend(,r)

irecv(t ,r)

irecv(t ,r)

waitall(r);X

b

isend(,r)b

return

Figure 6.10: Adjoint waitall With the Use of an anti waitall.

The final X in the rightmost graph in Fig. 6.10 denotes the buffer updates
b̄j+=tj, j = 1, . . . , i and b̄j = 0, j = i + 1, . . . that have to wait for completion
of the non-blocking calls. Here, similar to the recipes in Table 6.1, the addi-
tional context information that is required to accomplish X could be avoided
if one wrapped the MPI calls and performed the bookkeeping on the buffers to
be incremented and nullified inside the wrapper. However, the most efficient
implementation would turn these wrappers into a specific set of library calls
defined within the MPI standard which are guaranteed to be adjoinable. This
should include the semantics for send calls that nullify the passed in buffer
upon completion and also the semantics for recv calls the increment the passed
buffer. The message passing system internally already needs to manipulate the
buffer contents for heterogeneous environments that require data marshaling.

One frequently used MPI call is barrier, for instance in the context of
rsend; see Fig. 6.11. The standard requires that a recv has to be posted by
the time rsend is called, which typically necessitates a barrier in the recording
sweep.

P1 P2

rsend() wait(r)

barrier barrier

a

irecv(,r)b

f
o
r
w
a
r
d

barrier barrierP1

wait(r); +=t

irecv(t,r)

P2

a brsend(); =0b

r
e
v
e
r
s
e

Figure 6.11: Handling of the barrier Routine.

For the adjoint the barrier call stays in place; however, a vertex transformation
recipe requires context information or a nonoperational counterpart to the rsend
similar to the treatment of waitall in Fig. 6.10. In a logically correct program

142 Chapter 6. Implementation and Software

we can leave the barrier call in place for the adjoint transformation. We point
out that a logically correct use of barrier to demarcate a critical section always
requires synchronization on entry or exit in the original program whenever such
synchronization is required for respective exit and entry of the adjoint of that
critical section. MPI one-sided communication routines that resemble a shared-
memory programming style require explicit library calls on entry and exit of the
section performing remote memory accesses.

A naive view of the adjoint transformation of an OpenMP parallel loop
assumes that dependencies in the adjoint loop could arise only from antidepen-
dencies (i.e., overwrites) in the original loop, and vice versa. While any such
dependency would prevent the original loop from being parallelizable, the ab-
sence of such dependencies asserted by the OpenMP directive does not imply
that the adjoint loop is parallelizable. We illustrate the problem in Fig. 6.12.
The original loop (left) can be parallelized. A standard transformation inverting
the loop direction and generating the adjoint of the loop body (right) exhibits
various increment statements of bx. When this loop is parallelized, there is a
race between the reads and the writes of the bx elements.

loop i=2; i<n; ++i

a[i]=x[i-1]-2*x[i]+x[i+1]

b[i]=a[i]+sqrt(x[i])

end loop

loop i=n-1; i>=2;--i

ba[i] += bb[i]

bx[i] += bb[i]*1./(2*sqrt(x[i])

bb[i] = 0

bx[i-1] += ba[i]

bx[i] += (-2)*ba[i]

bx[i+1] += ba[i]

ba[i] = 0

enddo

Figure 6.12: Introduction of a Race Condition by Adjoining.

Here the problem lies with the increment operations of the adjoints because
there can be a race condition between the reads and the writes of the bx[i-1],
bx[i], and bx[i+1] when the adjoint loop is executed in parallel. Erroneous
computations caused by the race condition have been observed with science
applications. If the increment operation were atomic, which is not guaranteed
in practice, then this problem would disappear.

While it may not be possible to parallelize the adjoint loop, an important
benefit is the ability to cheaply recompute the values needed by the adjoint loop
body. In general the adjoint loop needs to be executed in the order reverse to
the original loop. Recomputing values (with loop carried dependencies) needed
by the adjoint implies either recording them or recomputing them at a cost
quadratic in the number of loop iterations. A parallelizable forward loop implies
that the iterations over the loop body can be executed in any order, for instance
in the reverse order that may be required in the return sweep when the adjoint
loop is not parallelizable, as in our example. The values needed for the adjoint
of the loop body can then be recomputed immediately prior to the return sweep
of that loop body iteration by running the recording sweep over that single
iteration. Therefore, the quadratic recomputation complexity vanishes; see also

6.4 Summary and Outlook 143

section 4.2.

6.4 Summary and Outlook

While the principles and basic techniques of algorithmic differentiation may are
quite simple and may even appear trivial to some their effective application to
larger problems poses quite a few challenges. Here the size and difficulty of a
problem depends not so much on the sheer runtime of an evaluation procedure
but the complexity of its coding. Heterogeneous calculations pieced together
from various software components and possibly run concurrently on several plat-
forms can realistically not be differentiated with current AD implementation.
Perspectively, each software component provided by a public or private ven-
dor should have calling modes for propagating sensitivity information forward
or backward in addition to its normal simulation functionality. This would of
course require an agreed upon standard for direct and adjoint derivative ma-
trices in a suitably compressed format. For the time being such prospect seem
a fair way off and for the most part we have to be content with differentiating
suites of source programs in a common language, typically from the Fortran or
C family. As described in section 6.3 concurrency encoded in MPI or OpenMP
can be largely preserved through the differentiation process, through some care
must be token to ensure correctness and maintain lead balancing. There is
even some prospect of gaining parallelism for example through strip-mining of
Jacobians or concurrent recomputations as briefly described at the and of Chap-
ter 12. Naturally these kinds of technique will remain in the domain of expert
users, who develop a large scale application where savings in wall-clock time are
critical.

For user with small or medium-sized AD applications the following consid-
erations for writing (or if necessary rewriting) code are useful.

Unless they are really completely separate, the evaluation of all problem
functions whose derivatives are needed (e.g., optimization objectives and con-
straints) should be invoked by one top-level function call. In doing so one should
make as much use as possible of common subexpressions, which then can also
be exploited by the differentiation tool. For some tools the top-level call can be
merely conceptual, that is represent a certain active section of the user program
where function evaluations take place.

Within the subroutines called by the top-level function, are should avoid
extensive calculations that are passive, in that they do not depend on the actual
values of variables, (e.g., the setting up of a grid). Even if the corresponding
code segments are conditioned on a flag and may, for example, be executed only
at an initial call, the AD tool may be unable to predict this runtime behavior
and wind up allocating and propagating a large number of zero derivatives. For
the same reason one should not share work arrays or local variables between
passive parts of the code and the top-level call that is to be differentiated.
Generally, one should separate code and data structures as much as possible
into an active and a passive part. If one knows that some calculations within

144 Chapter 6. Implementation and Software

an active subroutine have no or only a negligible influence on the derivative
values, one might go through the trouble of deactivating them by suppressing
the dependence on the independent variables.

These coding style recommendations are not really specific to AD. They
would similarly assist parallelizing or (“merely”) optimizing compilers. Any-
thing that simplifies compile-time dependence analysis by making the control
and data flow more transparent is a good idea. Whenever possible, one should
provide fixed upper bounds on array sizes and iteration counters.

6.5 Examples and Exercises

Exercise 6.1 (Scalar Forward by Overloading)
Code the adouble proposal for the forward mode as outlined in section 6.1
including the four basic arithmetic operations +,−, ∗, and / and the intrinsic
functions sin, cos, exp, and sqrt. For flexibility you may add mixed mode
versions where one argument is a double for the four binary operations,
though this is not necessary for the examples suggested.
a. Check and debug your implementation on the trivial test functions

y = x − x, x/x, sin2(x) + cos2(x), sqrt(x ∗ x), and exp(x)

and reproduce the results listed in Table 1.2 for the baby example.
b. For the norm problem discussed in Exercise 2.2, compare the accuracy
obtained by your implementation with that of difference quotient approxi-
mations.
c. Overload the incremental (C++) operation += for adoubles, and use it
to simplify the code for the norm problem.

Exercise 6.2 (Scalar Reverse by Overloading)
Code the adouble proposal for the reverse mode as outlined in section 6.1
with the same elemental operations as for your adoubles in Exercise 6.1.
Check and debug your code on the same trivial test functions.
a. Reproduce the results in Table 1.3 for the baby example.
b. Apply your implementation to Speelpenning’s product as discussed in
Exercise 3.6. At the argument xi = i/(1 + i), compare the results and
runtimes to a hand-coded adjoint procedure and also to n run of your forward
implementation from Exercise 6.1.
c. If one of the source transformation tools listed in section 6.2 is or can
be installed on your system, verify the consistency of its results with yours
and compare compilation times and runtimes.

Exercise 6.3 (Second-Order Adjoints)
Combine the forward and the reverse mode by modifying the class adouble
from your reverse mode implementation. Verify the correctness of this ex-
tension of the scalar reverse mode on the coordinate transformation example
discussed in Exercise 5.5.

6.5 Examples and Exercises 145

Exercise 6.4 (Second Derivatives Forward)
In order to propagate first and second directional derivatives, implement a
version of the class adouble that has the same structure as the adouble

for the forward mode, but whose field dot is of type adouble. For this
purpose, you may simply replicate the code overloading the restricted set
of elementals for adoubles. Check the correctness of your implementation
on the trivial identities, and compute the acceleration of the light point in
the lighthouse example of section 2.1. Observe that the new adouble could
also be defined as a adouble<adouble<double>>, namely, by a recursive
application of templates. Such techniques are at the heart of the expression
templates techniques [Cés99] used to handle complicated right-hand sides
more efficiently.

Exercise 6.5 (Vector Forward by Overloading)
As suggested at the end of subsection 6.2 on page 119, code a class vector
providing additions between them and multiplication by a real scalar.
a. Replicate the source generated for the adouble class in Exercise 6.1
above with dot now a vector rather than a double. As in the previous
exercises you may define adoubles as a class template parametrized by the
type of dot.
b. Test the new vector implementation of the forward-mode on the trivial
identities, the norm example, and Speelpenning’s product. Compare the
runtimes with that of the scalar forward multiplied by n.

Exercise 6.6 (Taylor Forward)
To propagate higher derivatives forward, write an active class taylor whose
data member is a vector of d coefficients. Implement arithmetic operations
and intrinsic functions according to the formulas given in Tables 13.1 and
13.2, respectively. Test your implementation on the trivial test functions and
the lighthouse example to compute time derivatives of arbitrary order.

Exercise 6.7 (Overloading Assignments)
All exercises above can be performed in a language that does not allow the
overloading of assignments. However, this restriction may severely impair
efficiency for the following reason.

In the vector mode implementation according to the previous exercise,
the results from each arithmetic operation and other elemental function are
first placed into a temporary return variable and then typically copied to a
named variable on the left-hand side of an assignment. To avoid the often
repeated copying of the vector part of a adouble one may redefine its field
dot to be merely a pointer to a vector of derivatives, whose length need not
be limited at runtime. These objects can be dynamically allocated within
each overloaded elemental and by the initialization function makeindepvar

for the independent variables.
However, as one can easily see, for example, on Speelpenning’s product,

each multiplication would allocate an additional vector and none of those
would ever be released again so that the storage demand would grow by a

146 Chapter 6. Implementation and Software

factor of about n compared to the base implementation according to Exer-
cise 6.5. The simplest way to avoid this effect is to overload the assignment
so that the old vector pointed to by the left-hand side is deallocated, for
example, by the statement free(dot).
a. Modify your vector forward-mode as sketched above, and verify on Speel-
penning’s example that the results are correct and the storage is only of
order n. Check whether the elimination of vector copying actually reduces
the runtime.
b. Construct an example where an intermediate variable is first assigned
to another named variable and then receives a new value itself. Show that
the modified vector forward cannot work properly and correct it by adding
a reference counter to the data structure vector. Now deallocation happens
only when the reference counter has been reduced to zero.

Exercise 6.8 (User Defined Constructors/Destructors)
Even the last implementation sketched in Exercise 6.7 can work properly
only if the dot is automatically initialized to a null pointer upon variable
construction. This is ensured by most compilers, even if not strictly enforced
by all language standards. Otherwise looking up and modifying the refer-
ence counter may already cause segmentation faults. In C++ the user can
be sure of proper initialization by writing his or her own constructor func-
tion for variables of type adouble and such. Similarly, he or she can write
a corresponding destructor routine that is called by the compiler whenever
a variable of type adouble goes out of scope. In our context, the destructor
can decrement the reference counter of the vector structure being pointed
to by the variable being destructed. Otherwise, the reference counter mech-
anism introduced in part b of Exercise 6.7 cannot really work properly on
multilayered programs, though the derivative values obtained would be cor-
rect.

Upgrade the last version of vector forward once more by adding a con-
structor and a destructor for adouble as described above. Test the efficacy
of the new version, for example, on the norm problem recoded such that the
squaring of the xi happens in a function with at least one local variable.

